摘要:
A method for forming a T-gate of a metamorphic high electron mobility transistor is provided. The method includes sequentially laminating a plurality of resist films on a substrate; forming a T-shaped pattern in the laminated resist films using electron beam lithography; forming a gate metal layer on the substrate where the T-shaped pattern has been formed; attaching an adhesion member to the gate metal layer formed on a top surface of the laminated resist films and detaching the adhesion member to thereby remove the gate metal layer; and removing the laminated resist films.
摘要:
A T-gate forming method for a high electron mobility transistor includes the steps of: coating a first, a second and a third resist, each having an electron beam sensitivity different from each other, on a semiconductor substrate; performing a first exposure process by using an electron beam on the semiconductor substrate and then selectively developing the third resist; defining a gate head area by selectively developing the second resist to have a developed width wider than that of the third resist; performing a second exposure process by using an electron beam on the semiconductor substrate and then selectively developing the first resist in a bent shape at a temperature lower than in the development of the second and the third steps; and depositing metallic materials on the resists and then removing them to form a T-gate.
摘要:
A T-gate forming method for a high electron mobility transistor includes the steps of: coating a first, a second and a third resist, each having an electron beam sensitivity different from each other, on a semiconductor substrate; performing a first exposure process by using an electron beam on the semiconductor substrate and then selectively developing the third resist; defining a gate head area by selectively developing the second resist to have a developed width wider than that of the third resist; performing a second exposure process by using an electron beam on the semiconductor substrate and then selectively developing the first resist in a bent shape at a temperature lower than in the development of the second and the third steps; and depositing metallic materials on the resists and then removing them to form a T-gate.
摘要:
A negative electrode for a lithium battery and a lithium battery including the negative electrode, the negative electrode including: a matrix of a Sn grain and a metal M grain; and a carbon-based material grown on the matrix.
摘要:
An electrode conductive material, an electrode material including the electrode conductive material, an electrode including the electrode material, and a lithium battery including the electrode material. When the electrode conductive material is used, the amount of a conductive material required is decreased, capacity of the lithium battery is improved, and a charge and discharge rate is increased.
摘要:
A lithium titanium oxide for an anode active material of a lithium rechargeable battery, wherein a X-ray diffraction (XRD) spectrum has a first peak of Li4Ti5O12 and a second peak, and A50-55/A78-80 is in a predetermined range, as a result of XRD analysis, where A78-80 is an Area of the first peak and A50-55 is an Area of the second peak in XRD.
摘要翻译:一种用于锂可再充电电池的负极活性材料的锂二氧化钛,其中X射线衍射(XRD)光谱具有Li 4 Ti 5 O 12的第一峰和第二峰,并且A50-55 / A78-80在预定范围内, 作为XRD分析的结果,其中A78-80是第一个峰的面积,A50-55是XRD中第二个峰的面积。
摘要:
A method of fabricating a solar cell includes forming a doped portion having a first conductive type on a semiconductor substrate, growing an oxide layer on the semiconductor substrate, forming a plurality of recess portions in the oxide layer, further growing the oxide layer on the semiconductor substrate, forming a doped portion having a second conductive type on areas of the semiconductor substrate corresponding to the recess portions, forming a first conductive electrode electrically coupled to the doped portion having the first conductive type, and forming a second conductive electrode on the semiconductor substrate and electrically coupled to the doped portion having the second conductive type, wherein a gap between the doped portions having the first and second conductive types corresponds to a width of the oxide layer formed by further growing the oxide layer.
摘要:
A mooring system for a vessel includes an attachment unit configured to be detachably attached to a hull of the vessel; a robot arm including a plurality of arms, the arms being coupled to each other to turn in a vertical direction, the robot, arm extending by an arm actuator provided thereto to transfer the attachment unit to an attachment position of the hull; a rotation unit connected to the robot arm and allowing the robot arm to turn in a horizontal direction; and a mooring winch for winding a mooring cable to draw the attachment unit. A floating body or a quay wall may include the mooring system.
摘要:
A solar cell includes a silicon substrate including a front surface for receiving light, and a rear surface opposite the front surface, an emitter diffusion region on the rear surface and doped with a first polarity that is opposite to a polarity of the silicon substrate, a base diffusion region on the rear surface of the substrate and doped with a second polarity that is the same as the polarity of the silicon substrate, and an insulation gap between the emitter diffusion region and the base diffusion region, wherein the base diffusion region has a closed polygonal shape, and wherein the insulation gap is adjacent the base diffusion region.
摘要:
A negative active material, an electrode including the same, and a lithium battery including the electrode. The negative active material has no volumetric expansion and has high solubility with respect to lithium. In addition, the negative active material is in the form of spherical particles, and thus does not require a separate granulating process. Moreover, the negative active material may enhance the capacity of a lithium battery.