摘要:
A method for manufacturing a substrate, a polishing process for a substrate, a method of reducing microwaviness for a substrate, each including the step of polishing a substrate to be polished with a polishing composition containing an abrasive and water with a polishing pad of which surface member has an average pore size of from 1 to 35 μm; and a method of reducing scratches for a substrate, comprising the step of polishing a substrate to be polished with a polishing composition comprising an abrasive, an oxidizing agent, an acid, a salt thereof, or a mixture thereof and water, with a polishing pad of which surface member has an average pore size of from 1 to 35 μm. The method for manufacturing a substrate can be used for finish polishing of a memory hard disk or for polishing of a semiconductor element.
摘要:
A polishing composition for a substrate for memory hard disk comprising water and silica particles, wherein the silica particles have a particle size distribution in which the relationship of a particle size (R) and a cumulative volume frequency (V) in a graph of particle size-cumulative volume frequency obtained by plotting a cumulative volume frequency (%) of the silica particles counted from a small particle size side against a particle size (nm) of the silica particles satisfies the above formula (1) and the above formula (2), and wherein a particle size at 90% of a cumulative volume frequency (D90) is within the range of 65 nm or more and less than 105 nm. By using the polishing composition of the present invention, there can be efficiently manufactured an Ni—P plated substrate for a disk polished to have an excellent surface smoothness, in which the micropits are effectively reduced.
摘要:
The present invention relates to a cutting oil comprising (a) a polyether compound represented by the formula (I): R1O(EO)m(AO)nR2 (I) wherein each of R1 and R2, which may be identical or different, is hydrogen atom or a hydrocarbon group having 1 to 24 carbon atoms, at least one of which is a hydrocarbon group; EO is oxyethylene group; AO is an oxyalkylene group having 3 or 4 carbon atoms; and each of m and n is 1 to 50, wherein a sum of m and n is from 4 to 100; a cutting oil composition comprising the above cutting oil and an abrasive; a cutting method using the above cutting oil composition; and a process of cleaning a wafer, comprising the steps of cleaning a wafer obtainable by cutting an ingot with a wire saw using the above cutting oil composition; heating the resulting waste water to a temperature equal to or higher than a cloud point of a polyether compound represented by the formula (I) contained in the waste water, to allow separation into an oil phase and an aqueous phase; and removing the oil phase comprising the polyether compound from the waste water. According to the present invention, there can be obtained excellent dispersibility of the abrasive, and excellent re-dispersibility, cutting performance and workability when sedimented, and the object to be cut obtained after cutting can be easily cleaned.
摘要:
A polishing composition containing an abrasive and water, wherein the polishing composition has a pH of from 0.1 to 7, and satisfies the following conditions: (1) that the number of polishing particles having sizes of 0.56 μm or more and less than 1 μm is 500,000 or less per 1 cm3 of the polishing composition; and (2) that the ratio of polishing particles having sizes of 1 μm or more is 0.001% by weight or less to the entire polishing particles in the polishing composition. The polishing composition is suitable for polishing substrates for precision parts including, for example, recording disk substrates, such as magnetic disks, optical disks, and opto-magnetic disks, photomask substrates, optical lenses, optical mirrors, optical prisms and semiconductor substrates, and the like.
摘要:
The present invention provides a polishing composition for a glass substrate having a pH of from 0.5 to 5, containing a silica of which primary particles have an average particle size of from 5 to 50 nm and an acrylic acid/sulfonic acid copolymer having a weight-average molecular weight of from 1,000 to 5,000; and a method for manufacturing a glass substrate using the polishing composition. The polishing composition for a glass substrate can be suitably used, for example, in the manufacture of glass hard disks, aluminosilicate glass for reinforced glass substrates, glass ceramic substrates (crystallized glass substrates), synthetic quartz glass substrates (photomask substrates), and the like.
摘要:
A surface treatment composition for metal working which comprises 20 to 50 parts by weight of a mixture of a chlorine-containing thermoplastic synthetic resin or chlorine-containing rubber having a molecular weight of 8000 to 10000 and a chlorine-containing thermoplastic synthetic resin or chlorine-containing rubber having a molecular weight of 17000 to 19000, 2 to 15 parts by weight of a plasticizer and 2 to 20 parts by weight of a wax having 30 to 80 carbon atoms and melting at 60.degree. to 120.degree.C.
摘要:
A method for manufacturing an aluminosilicate glass substrate for a hard disk of the present invention includes polishing an aluminosilicate glass substrate to be polished with a polishing composition that includes silica particles, a polymer having a sulfonic acid group, and water, wherein an adsorption constant of the polymer having the sulfonic acid group on aluminosilicate glass is 1.5 to 5.0 L/g. The polymer having the sulfonic acid group is preferably a polymer having an aromatic ring. The weight average molecular weight of the polymer having the sulfonic acid group is 3000 to 100000.
摘要:
A method for manufacturing an aluminosilicate glass substrate for a hard disk of the present invention includes polishing an aluminosilicate glass substrate to be polished with a polishing composition that includes silica particles, a polymer having a sulfonic acid group, and water, wherein an adsorption constant of the polymer having the sulfonic acid group on aluminosilicate glass is 1.5 to 5.0 L/g. The polymer having the sulfonic acid group is preferably a polymer having an aromatic ring. The weight average molecular weight of the polymer having the sulfonic acid group is 3000 to 100000.
摘要:
The present invention provides a polishing composition for a glass substrate having a pH of from 1 to 5 and containing silica particles having an average particle size of from 5 to 100 nm, wherein, in a projected image of the silica particles obtainable by an image analysis of electron photomicrographs, an average of an area ratio R of a projected area of the silica particles (A1) to an area of a maximum inscribed circle of the silica particles (A), i.e. (A1/A), is in the range of from 1.2 to 3.0, and the silica particles have an average of 2.0 to 10 projection portions having a curvature radius of from ⅕ to ½ of a radius of the maximum inscribed circle of the silica particles (r) on the outline of the silica particles in the projected image, and a method for manufacturing a glass substrate, including the step of polishing a substrate to be polished with a polishing load of from 3 to 12 kPa and at a pH of from 1 to 5 while allowing the polishing composition to be present between a polishing pad and the substrate to be polished. The polishing composition for a glass substrate of the present invention can be suitably used, for example, in the manufacture of glass hard disks, aluminosilicate glass for reinforced glass substrates, glass ceramic substrates (crystallized glass substrates), and the like.
摘要:
The present invention provides a polishing composition for a glass substrate having a pH of from 1 to 5 and containing silica particles having an average particle size of from 5 to 100 nm, wherein, in a projected image of the silica particles obtainable by an image analysis of electron photomicrographs, an average of an area ratio R of a projected area of the silica particles (A1) to an area of a maximum inscribed circle of the silica particles (A), i.e. (A1/A), is in the range of from 1.2 to 3.0, and the silica particles have an average of 2.0 to 10 projection portions having a curvature radius of from ⅕ to ½ of a radius of the maximum inscribed circle of the silica particles (r) on the outline of the silica particles in the projected image, and a method for manufacturing a glass substrate, including the step of polishing a substrate to be polished with a polishing load of from 3 to 12 kPa and at a pH of from 1 to 5 while allowing the polishing composition to be present between a polishing pad and the substrate to be polished. The polishing composition for a glass substrate of the present invention can be suitably used, for example, in the manufacture of glass hard disks, aluminosilicate glass for reinforced glass substrates, glass ceramic substrates (crystallized glass substrates), and the like.