摘要:
The present invention is to provide a technique which can detect the level of degradation of a precatalyst in an exhaust gas purification system for an internal combustion engine that includes a NOx catalyst arranged on an exhaust passage of the internal combustion engine, and the precatalyst arranged on the exhaust passage at a location upstream of the NOx catalyst and having an oxidation function. In the present invention, the level of degradation of the precatalyst is detected based on the width of change in temperature of the NOx catalyst at the time when a reducing agent is intermittently supplied from an upstream side of the precatalyst to the precatalyst and the NOx catalyst. At this time, it is determined that the larger the width of change in temperature of the NOx catalyst, the higher the level of degradation of the oxidation catalyst is.
摘要:
An exhaust temperature raising apparatus has an exhaust throttle valve that adjusts the engine exhaust amount based on the amount of throttling, and an injector that performs main injection and a sub-injection directly into a cylinder, a combination of an ECU, the injection and the exhaust throttle valve as exhaust gas temperature increase apparatus for, during an engine warm-up, performing and controlling the exhaust throttling by the exhaust valve and performing and controlling an exhaust gas temperature increase through combustion attributed to the main injection performed in an excess-air condition and combustion attributed to the sub-injection, an exhaust gas temperature sensor that monitors a state of temperature increase of the exhaust gas caused by performance of the exhaust gas temperature increase apparatus, and the ECU as monitor abnormality detection apparatus for determining whether the exhaust gas temperature sensor has an abnormality, and the ECU as exhaust gas temperature increase stop apparatus for stopping the operation of the exhaust gas temperature increase apparatus when the ECU determines that the exhaust gas temperature sensor has an abnormality.
摘要:
In an exhaust gas purification device, a catalytic converter containing selective reduction catalysts is disposed in an exhaust gas passage of an internal combustion engine capable of being operated at a lean air-fuel ratio. The catalytic converter includes a plurality of the selective reduction catalysts disposed in series in the casing of the catalytic converter. Bypass passages which supply the exhaust gas to downstream selective reduction catalysts in the casing by bypassing the upstream catalysts are provided. When a reducing agent is supplied to the exhaust gas upstream of the converter, a part of the supplied reducing agent directly reaches the downstream selective reduction catalyst through the bypass passages without being oxidized by the upstream selective reduction catalysts. Therefore, the NOx purifying abilities of the downstream catalysts are improved and the formation of sulfates on the downstream catalysts is suppressed.
摘要:
A compression ignition type engine, wherein a first combustion where the amount of the recirculated exhaust gas supplied to the combustion chamber is larger than the amount of recirculated exhaust gas where the amount of production of soot peaks and almost no soot is produced and a second combustion where the amount of recirculated exhaust gas supplied to the combustion chamber is smaller than the amount of recirculated exhaust gas where the amount of production of soot peaks are selectively switched between and wherein the air-fuel ratio is temporarily made rich immediately before switching from the first combustion to the second combustion or immediately after switching from the second combustion to the first combustion.
摘要:
According to the present invention, there is provided an exhaust gas purification device, comprising a NOx absorbent arranged in an exhaust passage of an engine for absorbing NOx therein when an air-fuel ratio of an exhaust gas flowing into the NOx absorbent is lean, the NOx absorbent discharging NOx absorbed therein when a concentration of the oxygen in the exhaust gas flowing into the NOx absorbent decreases, a trapping element arranged in the exhaust passage upstream of the NOx absorbent for trapping particulates, a processing element for processing the particulates trapped in the trapping element to regenerate the trapping element, and a preventing element for preventing the exhaust gas from flowing into the NOx absorbent from the trapping element when the trapping element is regenerated.
摘要:
A device for purifying the exhaust gas of an engine comprises a NO.sub.X absorbent arranged in the exhaust passage. The NO.sub.X absorbent absorbs NO.sub.X therein when the air-fuel ratio of the inflowing exhaust gas is lean, and releases the absorbed NO.sub.X therefrom when the oxygen concentration in the inflowing exhaust gas becomes lower. The NO.sub.X absorbent also absorbs SO.sub.X therein when the air-fuel ratio of the inflowing exhaust gas is lean, and releases the absorbed SO.sub.X therefrom when the oxygen concentration in the inflowing exhaust gas becomes lower, with the temperature of the NO.sub.X absorbent being higher than a SO.sub.X releasing temperature. The air-fuel ratio of the exhaust gas flowing to the NO.sub.X absorbent is made rich temporarily when the temperature of the NO.sub.X absorbent is higher than SO.sub.X releasing temperature and when the flow rate of the exhaust gas flowing through the NO.sub.X absorbent is lower than a predetermined flow rate, to release the absorbed SO.sub.X from the NO.sub.X absorbent.
摘要:
In the present exhaust purification system of an internal combustion engine, a particulate filter is arranged downstream of an NOx storage/reduction catalyst device and an S trap device is arranged upstream of the NOx storage/reduction catalyst device. A first fuel supplying means for supplying additional fuel for regeneration of the particulate filter to the exhaust system upstream of the S trap device or into the cylinder is provided. An amount of the additional fuel supplied by the first fuel supplying means is controlled to make the S trap device not release SOx. A second fuel supplying means is provided in the exhaust system between the NOx storage/reduction catalyst device and the particulate filter to make up for a deficiency of the additional fuel supplied by the first fuel supplying means in the regeneration treatment of the particulate filter.
摘要:
A NOx storing catalyst (11) comprising a precious metal catalyst (46) and NOx absorbent (47) is arranged in an exhaust passage. When the air-fuel ratio of the exhaust gas is lean, the storing catalyst cold stores the NO2 contained in the exhaust in the absorbent when the catalyst is inactive and hot stores the cold stored NO2 in the absorbent when the catalyst is made active. The NO2 contained in the exhaust is cold stored in the absorbent when the catalyst is not activated, and when a predetermined NOx storing catalyst restoring condition (107) is met, a NOx storing catalyst restoring control (109, 115) including raising the NOx storing catalyst temperature to a predetermined temperature to active it (109) is executed so as to restore the cold storing capability of the NOx absorbent.
摘要:
A post-treatment system comprised of an SOx trapping catalyst (11), a particulate filter (13) carrying an NOx storing and reducing catalyst, and an NOx storing and reducing catalyst (15) and a fuel feed valve (17) for feeding fuel for post processing to the post-treatment system are arranged in an engine exhaust passage. Each time an operating period of the engine passes a certain period, values of operating parameters of the engine and the method of feeding the post-treatment use fuel are reset so that the total amount of consumption of the combustion use fuel and post-treatment use fuel becomes smallest while maintaining the amounts of the harmful components discharged into the atmosphere at below the regulatory values.
摘要:
An SOX trap catalyst 12 and NOX purification catalyst 13 are arranged in an engine exhaust passage. A substrate 50 of the NOX purification catalyst 13 is formed with a coat layer comprised of at least the two layers of an upper coat layer 51 and a lower coat layer 52. The lower coat layer 52 is formed from an NOX storage catalyst storing the NOX contained in the exhaust gas when the air-fuel ratio of the exhaust gas is lean and releasing the stored NOX when the air-fuel ratio of the exhaust gas is a stoichiometric air-fuel ratio or rich. The upper coat layer 51 is formed from a material of a weaker basicity than this NOX storage catalyst.
摘要翻译:在发动机排气通道中设置有SO x捕集催化剂12和NO x净化催化剂13。 NO x净化催化剂13的基板50由至少两层上涂层51和下涂层52构成的涂层形成。下涂层52由储存有NOX的NO x储存催化剂形成 当排气的空燃比为稀的时,排气中的废气中含有的废气中的空气燃料比为理论空燃比或浓,释放储存的NO x。 上涂层51由比该NO x储存催化剂的碱性弱的材料形成。