Abstract:
A three-way catalyst (20) having an oxygen storage function and an exhaust purification catalyst (22) are arranged in the exhaust passage of an internal combustion engine. During medium-load operation of the engine the degree of lean of the air-fuel ratio in the combustion chamber (5) is increased so as to increase the oxygen storage amount of the three-way catalyst (20) to the maximum oxygen storage amount, and the air-fuel ratio in the combustion chamber (5) even after the oxygen storage amount of the three-way catalyst (20) has reached the maximum oxygen, storage amount is maintained at lean, after which the air-fuel ratio is returned to rich, and at this time, as the amount of poisoning of a noble metal catalyst when the air-fuel ratio in the combustion chamber (5) is rich increases, the amount of time for which the air-fuel ratio in the combustion chamber (5) is maintained at lean is increased.
Abstract:
An internal combustion engine wherein an exhaust purification catalyst and hydrocarbon feed valve are arranged in an engine exhaust passage and wherein the NOX which is contained in the exhaust gas is removed by injection of hydrocarbons from the hydrocarbon feed valve by a predetermined period. Hydrocarbons are injected from the hydrocarbon feed valve toward the upstream side of the engine exhaust passage. When hydrocarbons are injected from the hydrocarbon feed valve by a predetermined period, the injection pressure of the hydrocarbons is made to gradually fall from injection start to injection end in the injection time period of each injection.
Abstract:
A hydrocarbon feed valve and an exhaust purification catalyst are arranged in an engine exhaust passage. A first NOX purification method which injects hydrocarbons from the hydrocarbon feed valve by a predetermined period to thereby remove NOX which is contained in the exhaust gas and a second NOX purification method which makes the air-fuel ratio of the exhaust gas which flows into the exhaust purification catalyst rich to make the exhaust purification catalyst release the stored NOX when the NOX which is stored in the exhaust purification catalyst exceeds a first allowable value are selectively used. Hydrocarbons are injected from the hydrocarbon feed valve by the predetermined period, and when the NOX which is stored in the exhaust purification catalyst exceeds a second allowable value which is smaller than the first allowable value, the air-fuel ratio of the exhaust gas which flows into the exhaust purification catalyst is made rich.
Abstract:
A straight-flow exhaust purification catalyst (13) and a hydrocarbon supply valve (15) are arranged in the engine exhaust passage of an internal combustion engine. A region which is a limited portion of the upstream-side end-surface peripheral part of the exhaust gas purification catalyst (13), where there is a possibility of clogging due to deposition oh fine particles in the exhaust gas, is predicted to be a fine particle deposition region, and an air-fuel ratio sensor (23) is arranged within an exhaust gas circulation region, which is downstream from the downstream-side end-surface peripheral part of the exhaust purification catalyst (13) and is downstream from the fine particle deposition region when viewed along the longitudinal axis of the exhaust purification catalyst. When the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst (13) momentarily changes and the rate of change of the output value from, the air-fuel ratio sensor (23) decreases, it is determined that clogging due to deposition of fine particles in the exhaust gas has occurred in the fine particle deposition region in the upstream-side end-surface peripheral pat of the exhaust purification catalyst (13).
Abstract:
In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. At the time of engine operation, the amplitude of change of the concentration of hydrocarbons which flow into the exhaust purification catalyst (13) is made to become within a predetermined range of amplitude by control of at least one of the injection time and injection pressure of hydrocarbons from the hydrocarbon feed valve (15). In this case, when only the injection time of hydrocarbons is controlled, the injection time of hydrocarbons under the same engine operating state is made longer the higher the temperature of the exhaust purification catalyst (13).
Abstract:
In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust treatment catalyst (13) are arranged. On a substrate (45) of the exhaust treatment catalyst (13), a coat layer comprised of at least two layers of a top coat layer (46) and a bottom coat layer (47) is formed. The top coat layer (46) is comprised of an exhaust purification catalyst for reacting NOx contained in exhaust gas and reformed hydrocarbons, while the bottom coat layer (47) is comprised of an NOx absorption catalyst. The concentration of hydrocarbons which flows into the exhaust treatment catalyst (13) is made to vibrate within a predetermined range of amplitude and within a predetermined range of period. Due to this, NOx contained in exhaust gas and NOx desorbed from the NOx absorption catalyst (47) are reduced in the exhaust purification catalyst (46).
Abstract:
An exhaust purification system of an internal combustion engine provided with an exhaust purification catalyst which reacts NOX and hydrocarbons. The exhaust purification catalyst includes an upstream side catalyst and a downstream side catalyst. The upstream side catalyst has an oxidation ability, while the downstream side catalyst carries precious metal catalyst particles on the exhaust flow surface and is formed with basic exhaust flow surface parts. The exhaust purification catalyst can make the concentration of hydrocarbons vibrate by within a predetermined range of amplitude and by within a predetermined range of period so as to partially oxidize the hydrocarbons or produce reducing intermediates at the upstream side catalyst. When the temperature of the upstream side catalyst is less than a first judgment temperature and the temperature of the downstream side catalyst is higher than a second judgment temperature, the temperature of the upstream side catalyst is made to rise.
Abstract:
In an internal combustion engine, inside an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. A first hydrocarbon feed method which injections hydrocarbons from the hydrocarbon feed valve (15) by predetermined feed intervals (ΔT) so that the air-fuel ratio of the exhaust gas falls to the demanded minimum air-fuel ratio (X) to thereby remove the NOx contained in the exhaust gas and a second hydrocarbon feed method which lowers the feed amount of hydrocarbons from the hydrocarbon feed valve (15) and feeds fuel to the combustion chambers (2) during a second half of the expansion stroke or the exhaust stroke are selectively used.
Abstract:
The present invention is intended to improve a SOx reduction rate which is a ratio of an amount of SOx reduction with respect to an amount of SOx occlusion in SOx poisoning recovery processing. In the present invention, in the SOx poisoning recovery processing in which the SOx occluded in an NOx storage reduction catalyst is reduced by decreasing the air fuel ratio of an exhaust gas flowing into the NOx storage reduction catalyst to a predetermined air fuel ratio in a repeated manner, the length of a period in which the air fuel ratio of an exhaust gas flowing into the NOx storage reduction catalyst is decreased is made longer in a relatively early time during the processing than in a relatively late time during the processing.
Abstract:
In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. At the time of engine operation, the amplitude of change of the concentration of hydrocarbons which flow into the exhaust purification catalyst (13) is made to become within a predetermined range of amplitude by control of the injection amount of hydrocarbons from the hydrocarbon feed valve (15), the concentration of hydrocarbons flowing into the exhaust purification catalyst (13) is made to vibrate by a predetermined range of period by control of the injection period of hydrocarbons from the hydrocarbon feed valve (15), and thereby the NOx contained in the exhaust gas and the NOx stored in the exhaust purification catalyst (13) are reduced.