摘要:
Objects of the present invention are the provision of an active energy ray curable composition which can be cured in the absence of a photoinitiator, and which can also be cured at practical light intensities and irradiating energy, and a method for curing the said curable composition; in which the composition comprises a maleimide derivative represented by formula (1): wherein m and n each represent an integer of 1 to 5, and the total of m and n is 6 or smaller, R11 and R12 each represent a linking group selected from the group consisting of {circle around (1)} an alkylene group, {circle around (2)} an alicyclic group, {circle around (3)} an arylalkylene group, and {circle around (4)} a cycloalkylalkyene group, G1 and G2 each represent an ester linkage selected from the group consisting of —COO— and —OCO—, R2 represents a linking chain having an average molecular weight of 100 to 100,000 selected from the group consisting of (A) a (poly)ether linking chain and (B) a (poly)ester linking chain, in which at least one organic group selected from the group consisting of {circle around (1)} a straight chain alkylene group, {circle around (2)} a branched alkylene group, {circle around (3)} an alkylene group having a hydroxyl group, {circle around (4)} an alicyclic group, {circle around (5)} an aryl group, and {circle around (6)} an arylalkylene group is connected via at least one linkage selected from the group consisting of (a) an ether linkage and (b) an ester linkage.
摘要:
A method for controlling the cure rate of a water compatible non emulsion, non dispersing, actinic radiation curable composition containing a maleimide derivative
摘要:
A method for curing an active single phase water compatible actinic radiation curable composition, comprising: irradiating a water compatible non emulsion, non dispersing compound, water, and a maleimide derivative.
摘要:
Active water compatible energy curable compositions comprised of maleimide derivatives, water compatible resins and water which are capable of curing at a practical intensity and energy level and a method for curing same.
摘要:
Active water compatible actinic radiation curable printing ink or coating compositions comprised of maleimide derivatives, water compatible resins and water, which are capable of curing at a practical intensity and energy level and a method for curing same.
摘要:
To provide a photocurable composition for sealing a liquid crystal panel, which is excellent in heat resistance and moisture proof, namely, water vapor barrier properties, and can obtain a liquid crystal panel free from a decreased voltage holding ratio. The photocurable composition contains (1) a photopolymerizable compound having a fused alicyclic structure and a maleimide group and (2) a photopolymerizable compound having an alicyclic structure and two or more (meth)acryloyl groups per molecule.
摘要:
Provided is an ink that is the most suitable for a method for forming an organic transistor by transferring a pattern using a liquid-repellent transfer substrate, for example, a microcontact printing method or a reverse printing method. Specifically, provided is an organic semiconductor ink composition which can provide a uniform ink coating film on a surface of a liquid-repellent transfer substrate and which can provide a dry ink film or a semi-dry ink film capable of being easily transferred from the transfer substrate to a transfer-receiving base material. Also provided is a method for forming an organic semiconductor pattern of an organic transistor, the method using the organic semiconductor ink composition. The organic semiconductor ink composition used for obtaining a desired pattern by transferring an ink layer formed on a liquid-repellent transfer substrate to a printing base material contains an organic semiconductor, an organic solvent, and a fluorine-based surfactant.
摘要:
A conventional liquid crystal display comprises a number of components, so that a manufacturing cost cannot be reduced. Furthermore, a large-area substrate has problems in shipping. According to this invention, a liquid-crystal panel is prepared by forming individual optically functional films, a TFT device and a light-emitting device on a long thin film and then laminating the film by a transfer process. A base film to be a substrate in a liquid-crystal panel preferably has a thickness of 10 μm to 200 μm, a curvature radius of 40 mm or less as a measure of flexibility and a coefficient of thermal expansion of 50 ppm/° C. or less. Furthermore, it more preferably gives a variation of ±5% or less in mechanical and optical properties to a thermal history at 200° C.
摘要:
Provided is an ink that is the most suitable for a method for forming an organic transistor by transferring a pattern using a liquid-repellent transfer substrate, for example, a microcontact printing method or a reverse printing method. Specifically, provided is an organic semiconductor ink composition which can provide a uniform ink coating film on a surface of a liquid-repellent transfer substrate and which can provide a dry ink film or a semi-dry ink film capable of being easily transferred from the transfer substrate to a transfer-receiving base material. Also provided is a method for forming an organic semiconductor pattern of an organic transistor, the method using the organic semiconductor ink composition. The organic semiconductor ink composition used for obtaining a desired pattern by transferring an ink layer formed on a liquid-repellent transfer substrate to a printing base material contains an organic semiconductor, an organic solvent, and a fluorine-based surfactant.
摘要:
The object of the present invention is to provide an organic transistor using an organic semiconductor having excellent transistor properties, and a method for producing the organic transistor, the present invention providing, first, an organic transistor including a gate electrode (b), an insulating layer (c), an organic semiconductor layer (d) which contacts the insulating layer (c) and has a channel formation area, and source/drain electrodes (e), which are formed on (a) a substrate, wherein the organic semiconductor layer (d) contains a fluorine-based compound (surfactant), and, secondly, a method for producing an organic transistor comprising a gate electrode (b), an insulating layer (c), an organic semiconductor layer (d) which contacts the insulating layer (c) and has a channel formation area, and source/drain electrodes (e), which are formed on (a) a substrate, the method comprising: a step in which the organic semiconductor layer (d) is formed on the insulating layer (c) by printing or coating an organic semiconductor solution containing a fluorine-based surfactant; or a step in which the insulating layer (d) is formed on the organic semiconductor layer (d) containing a fluorine-based surfactant by printing or coating.