Abstract:
The invention provides an on-vehicle electronic control unit wherein all types of combinations of electrical equipment can be controlled by the electronic control unit with a common arrangement without changing the arrangement of the microcomputer, the print circuit board or the like, which makes it possible to reduce the number of parts of the on-vehicle electronic control unit to a large extent and reduce the cost thereof. The memory portion of a microcomputer of the electronic control unit stores the control programs for all types of electrical equipment to be controlled. Input terminals are opened and/or ground in accordance with the combination of electrical equipment to be controlled so that the microcomputer can recognize the type of the control program to read from the memory portion. In this manner, the electronic control unit is adapted to the change of the combination of the electrical equipment without changing the hardware arrangement. In this case, an alarm for key-forgotten state and a room lamp are both provided normally, and motors for locking and unlocking an electric door lock system are provided optionally so that they can be replaced by other electrical equipment such as electric flexible outer mirrors or other devices.
Abstract:
In a device for detecting the operative states of switches, a common switching device 17 is connected in series with input resistors 16, and currents flowing into switching circuits are cut off when it is judged based on the states of switches 10 to 15 that a vehicle is being parked. Further, a detector 19 is so set as to perform its detection only at specified intervals. The switching device 17 is turned on at the detection timing of the detector 19 and is, when the detector 19 performs no detection, turned off so as to prevent the currents from flowing into the respective switching circuits. With the above construction, the currents flowing into the switching circuits can perfectly be cut off while the vehicle is being parked, and the input resistors in use are less than in the prior art. Further, since the currents flow through the input resistors at specified intervals, an average power consumption of each input resistor can be reduced, enabling the use of input resistors having a low rated power.
Abstract:
Data in a RAM indicated by a top address is read, the read contents are written into the next address, and the operation is repeated to an end address, then the RAM value at the end address is compared with the RAM value at the top address. If the RAM values are the same, all the RAM is determined to be normal. The data comparison processing may include only one comparison with the end address data. Additionally, a ROM may be checked in a distributed manner in the wait time of main processing, rather than being checked in initial processing.
Abstract:
A wiring structure comprises a connector and an electromagnetic relay mounted on a printed circuit board. Connector terminals extend respectively to lead terminals of the electromagnetic relay. Through holes formed respectively through distal end portions of the connector terminals and, are aligned respectively with through holes in the printed circuit board in an overlying manner, and each of the lead terminals of the electromagnetic relay is passed through the associated mating pair of aligned through holes, and is fixed thereto by soldering.
Abstract:
There is disclosed a device for detecting an abnormality in relays which is adapted such that if there is a current flow through a motor (M) when first and second transistors (Q1, Q2) are off resulting from an abnormality such as melting of first and second motor driving relays (RL1, RL2), a controller (1) turns on the transistors (Q1, Q2) of a motor driving portion (2) in response to a detection signal from a signal detecting portion (3) and accordingly provides the same potential across the motor (M) to stop the motor (M) without a conventionally complicated, costly construction.
Abstract:
Method and apparatus for reducing electrical power consumption of an electronic unit provided with a central processing unit (CPU). The CPU is returned to a normal operation state at regular intervals when the CPU has been placed in a sleep state. The CPU outputs a clear signal to a monitoring circuit, and makes reference to an actuation signal for an external device, such as, for example, a motor from a control switch to place the CPU in the sleep state at a time other than a time when reference is made to the clear signal and the input signal. When the CPU has been released from the sleep state, reference to an output of the clear signal and the input signal and an output of only the clear signal are repeated at regular intervals and at a predetermined frequency.
Abstract:
In an electronic control unit mounting structure, electronic control units are mounted on a junction block, and printed circuit boards 4a and 4b of the electronic control units, each having a connector 41a, 41b of a through construction mounted thereon, are superposed in such a posture that these connectors 41a and 41b are disposed in registry with each other in an upward-downward direction, and connection terminals 31 of the junction block are inserted in the connectors 41a and 41b.
Abstract:
An electronic control unit for a car in which a control portion operates in accordance with signals given from a plurality of input portions including a car ignition switch to thereby perform drive control of a predetermined output portion, the control portion having a sleep function by which the control portion stops when the control portion in not required to operate, comprises a watchdog circuit for watching the operation of the control portion; and a conditioning circuit for defining a condition for starting the watchdog circuit; the conditioning circuit being constituted by an OR circuit for performing the logical sum OR among at least two signal inputs from the input portions and a signal input indicating the fact that the control portion is operating.