Side shielded magnetoresistive(MR) read with perpendicular magnetic free layer
    2.
    发明申请
    Side shielded magnetoresistive(MR) read with perpendicular magnetic free layer 有权
    侧面屏蔽磁阻(MR)用垂直磁性自由层读取

    公开(公告)号:US20110273802A1

    公开(公告)日:2011-11-10

    申请号:US12799924

    申请日:2010-05-05

    IPC分类号: G11B5/33

    摘要: A MR sensor is disclosed that has a free layer (FL) with perpendicular magnetic anisotropy (PMA) which eliminates the need for an adjacent hard bias structure to stabilize free layer magnetization and minimizes shield-FL interactions. In a TMR embodiment, a seed layer, free layer, junction layer, reference layer, and pinning layer are sequentially formed on a bottom shield. After patterning, a conformal insulation layer is formed along the sensor sidewall. Thereafter, a top shield is formed on the insulation layer and includes side shields that are separated from the FL by a narrow read gap. The sensor is scalable to widths

    摘要翻译: 公开了具有垂直磁各向异性(PMA)的自由层(FL)的MR传感器,其不需要相邻的硬偏置结构来稳定自由层磁化并使屏蔽-FL相互作用最小化。 在TMR实施例中,种子层,自由层,结层,参考层和钉扎层依次形成在底部屏蔽上。 在图案化之后,沿传感器侧壁形成保形绝缘层。 此后,在绝缘层上形成顶部屏蔽,并且包括通过狭窄的读取间隙与FL分离的侧面屏蔽。 当PMA大于FL自扫描场时,传感器可缩放到宽度<50 nm。 有效偏置场对传感器纵横比相当不敏感,这使得高条纹和窄宽度传感器成为高RA TMR配置的可行方法。 侧面屏蔽可以延伸到种子层平面以下。

    Perpendicular magnetic medium with shields between tracks
    3.
    发明授权
    Perpendicular magnetic medium with shields between tracks 有权
    轨道之间具有屏蔽的垂直磁性介质

    公开(公告)号:US08795763B2

    公开(公告)日:2014-08-05

    申请号:US12005182

    申请日:2007-12-26

    IPC分类号: G11B5/74

    摘要: A track shield structure is disclosed that enables higher track density to be achieved in a patterned track medium without increasing adjacent track erasure and side reading. This is accomplished by placing a soft magnetic shielding structure in the space that is present between the tracks in the patterned medium. A process for manufacturing the added shielding structure is also described.

    摘要翻译: 公开了一种轨道屏蔽结构,其能够在图案化的轨道介质中实现更高的轨道密度,而不增加相邻轨迹擦除和侧面读数。 这通过在存在于图案化介质中的轨道之间的空间中放置软磁屏蔽结构来实现。 还描述了用于制造附加的屏蔽结构的方法。

    MR sensor with flux guide enhanced hard bias structure
    4.
    发明授权
    MR sensor with flux guide enhanced hard bias structure 有权
    带传感器的MR传感器增强了硬偏置结构

    公开(公告)号:US08659292B2

    公开(公告)日:2014-02-25

    申请号:US12660909

    申请日:2010-03-05

    IPC分类号: G01R33/02

    摘要: A CPP MR sensor interposes a tapered soft magnetic flux guide (FG) layer between a hard magnetic biasing layer (HB) and the free layer of the sensor stack. The flux guide channels the flux of the hard magnetic biasing layer to effectively bias the free layer, while eliminating instability problems associated with magnetostatic coupling between the hard bias layers and the upper and lower shields surrounding the sensor when the reader-shield-spacing (RSS) is small.

    摘要翻译: CPP MR传感器将锥形软磁通导向器(FG)层介于硬磁偏置层(HB)和传感器堆叠的自由层之间。 磁通引导件引导硬磁偏置层的磁通,以有效地偏置自由层,同时消除与读取器屏蔽间隔(RSS)之间的硬偏置层与传感器周围的上下屏蔽之间的静磁耦合相关的不稳定性问题 ) 是小。

    Method of manufacturing an enhanced hard bias layer in thin film magnetoresistive sensors
    5.
    发明授权
    Method of manufacturing an enhanced hard bias layer in thin film magnetoresistive sensors 有权
    在薄膜磁阻传感器中制造增强型硬偏置层的方法

    公开(公告)号:US08490279B2

    公开(公告)日:2013-07-23

    申请号:US12924363

    申请日:2010-09-24

    IPC分类号: G11B5/187

    摘要: A method of forming a hard bias (HB) structure for longitudinally biasing a free layer in a MR sensor is disclosed. A HB layer is formed with easy axis growth perpendicular to an underlying seed layer which is formed above a substrate and along two sidewalls of the sensor. In one embodiment, a conformal soft magnetic layer that may be a top shield is deposited on the HB layer to provide direct exchange coupling that compensates HB surface charges. Optionally, a thin capping layer on the HB layer enables magneto-static shield-HB coupling. After HB initialization, HB regions along the sensor sidewalls have magnetizations that are perpendicular to the sidewalls as a result of surface charges near the seed layer. Sidewalls may be extended into the substrate (bottom shield) to give enhanced protection against side reading.

    摘要翻译: 公开了形成用于纵向偏置MR传感器中的自由层的硬偏置(HB)结构的方法。 形成具有垂直于底层种子层的易于轴生长的HB层,其形成在衬底上并沿着传感器的两个侧壁。 在一个实施例中,可以是顶部屏蔽的共形软磁性层沉积在HB层上以提供补偿HB表面电荷的直接交换耦合。 可选地,HB层上的薄覆盖层可实现磁静电屏蔽-HB耦合。 在HB初始化之后,沿着传感器侧壁的HB区域由于种子层附近的表面电荷而具有垂直于侧壁的磁化。 侧壁可以延伸到基板(底部屏蔽)中,以提供更强的防侧读保护。

    Perpendicular magnetic recording head laminated with AFM-FM phase change material
    7.
    发明申请
    Perpendicular magnetic recording head laminated with AFM-FM phase change material 有权
    垂直磁记录头与AFM-FM相变材料层压

    公开(公告)号:US20090052092A1

    公开(公告)日:2009-02-26

    申请号:US11894494

    申请日:2007-08-21

    IPC分类号: G11B5/33

    摘要: A PMR writer is disclosed that minimizes pole erasure during non-writing and maximize write field during writing through an AFM-FM phase change material that is in an AFM state during non-writing and switches to a FM state by heating during writing. The main pole layer including the write pole may be comprised of a laminated structure having a plurality of “n” ferromagnetic layers and “n-1” AFM-FM phase change material layers arranged in an alternating manner. The AFM-FM phase change material is preferably a FeRh or FeRhX alloy (X=Pt, Pd, or Ir) having a Rh content >35 atomic %. AFM-FM phase change material may also be used as a flux gate to prevent yoke flux from leaking into the write pole tip. Heating for the AFM to FM transition is provided by write coils and/or a coil located near the AFM-FM phase change material to enable faster transition times.

    摘要翻译: 公开了一种PMR写入器,其在非写入期间最小化磁极擦除,并且通过在非写入期间处于AFM状态的AFM-FM相变材料的写入期间写入字段最大化并且在写入期间通过加热切换到FM状态。 包括写极的主极层可以由具有多个“n”个铁磁层和“n-1”个AFM-FM相变材料层的交替排列的层压结构构成。 AFM-FM相变材料优选为Rh含量> 35原子%的FeRh或FeRhX合金(X = Pt,Pd或Ir)。 AFM-FM相变材料也可以用作磁通门,以防止磁轭磁通泄漏到写极尖端。 AFM到FM转换的加热由位于AFM-FM相变材料附近的写入线圈和/或线圈提供,以实现更快的转换时间。

    Spin injection layer robustness for microwave assisted magnetic recording
    9.
    发明申请
    Spin injection layer robustness for microwave assisted magnetic recording 有权
    微波辅助磁记录的自旋注入层鲁棒性

    公开(公告)号:US20130082787A1

    公开(公告)日:2013-04-04

    申请号:US13200844

    申请日:2011-10-03

    摘要: A spin transfer (torque) oscillator (STO) with a non-magnetic spacer formed between a spin injection layer (SIL) and a field generation layer (FGL), and with an interfacial layer comprised of Fe(100-V)CoV where v is from 5 to 100 atomic % formed between the SIL and non-magnetic spacer is disclosed. A composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture is used to enhance perpendicular magnetic anisotropy (PMA) in the STO device. The interfacial layer quenches SIL oscillations and thereby stabilizes the SIL against FGL oscillations. The interfacial layer preferably has a thickness from 5 to 50 Angstroms and enhances amplitude (dR/R) in the STO device. The STO device may have a top SIL or bottom SIL configuration. The SIL is typically a laminated structure such as (Co/Ni)X where x is between 5 and 50.

    摘要翻译: 具有在自旋注入层(SIL)和场产生层(FGL)之间形成的非磁性间隔物的自旋转移(扭矩)振荡器(STO),以及由Fe(100-V)CoV组成的界面层,其中v 公开了在SIL和非磁性间隔物之间​​形成的5至100原子%。 使用由Ta制成的复合晶种层和具有fcc(111)或hcp(001)结构的金属层来增强STO器件中的垂直磁各向异性(PMA)。 界面层淬灭SIL振荡,从而使SIL稳定于FGL振荡。 界面层优选具有5至50埃的厚度,并且增强STO器件中的振幅(dR / R)。 STO设备可能具有顶部SIL或底部SIL配置。 SIL通常是诸如(Co / Ni)X的层压结构,其中x在5和50之间。

    Field tunable spin torque oscillator for RF signal generation
    10.
    发明授权
    Field tunable spin torque oscillator for RF signal generation 有权
    用于RF信号产生的现场可调自旋转矩振荡器

    公开(公告)号:US08203389B1

    公开(公告)日:2012-06-19

    申请号:US12928194

    申请日:2010-12-06

    IPC分类号: H03L7/26

    CPC分类号: H03B15/006

    摘要: A spin transfer oscillator (STO) device is disclosed with a giant magnetoresistive (GMR) junction comprising a magnetic resistance layer (MRL)/spacer/magnetic oscillation layer (MOL) configuration, and a MR sensor including a sensing layer/junction layer/reference layer configuration. MOL and sensing layer are magnetostatically coupled and separated by a conductive spacer. MRL has perpendicular magnetic anisotropy while MOL and sensing layer have a Mst (saturation magnetization×thickness) value within ±50% of each other. When a magnetic field is applied perpendicular to the planes of the MOL and a high density current flows from the conductive spacer to the MRL, a MOL oscillation state with a certain frequency is induced. Consequently, the sensing layer oscillates with a similar RF frequency and when a low density current flows across the MR sensor, an AC voltage signal is generated to determine the sensing layer frequency that can be varied by adjusting the applied field.

    摘要翻译: 公开了具有包括磁阻层(MRL)/间隔物/磁振荡层(MOL))构造的巨磁阻(GMR)结的自旋转移振荡器(STO)装置,以及包括感测层/结层/参考 层配置。 MOL和感测层通过导电间隔件静磁耦合和分离。 MRL具有垂直磁各向异性,而MOL和感测层的Mst(饱和磁化强度×厚度)值彼此在±50%以内。 当垂直于MOL的平面施加磁场并且高密度电流从导电间隔物流向MRL时,产生具有一定频率的MOL振荡状态。 因此,感测层以类似的RF频率振荡,并且当低密度电流流过MR传感器时,产生AC电压信号以确定可以通过调整所施加的场来改变的感测层频率。