摘要:
The present invention relates to a semiconductor device and a method of manufacture thereof, being capable of improving the high integration by increasing a cell region while securing the reliability of device and the process margin through forming a cell region and a core region with the stacking structure.
摘要:
A method of manufacturing semiconductor devices forms a surface channel CMOSFET in the process of manufacturing a metal gate. The method forms a (TixAly)1-zNz film (where z ranges from about 0.0 to about 0.2) having a work function value ranging from about 4.2 to about 4.3 eV on a gate insulating film in a nMOS region, a (TixAly)1-zNz film (where z ranges from about 0.3 to about 0.6) having a work function value ranging from about 4.8 to about 5.0 eV on the gate insulating film in a pMOS region, thus implementing a surface channel CMOS device both in the nMOS region and the pMOS region. Therefore, the threshold voltage is reduced.
摘要:
The present invention discloses the single gate CMOS with the surface channel manufactured according to the manufacturing method of the present invention is very advantageous for improving the characteristics, yield and reliability of the device, by performing decoupled plasma nitridation (DPN) process on the gate oxide film of the cell NMOS and the peripheral PMOS, respectively, thereby forming a silicon nitride on the surface of the gate oxide film. Further, the single gate CMOS with the surface channel can be formed more easily through the simplified process in overall, without requiring a separate transient ion implantation process, even when the gate electrode of the n+ polysilicon layer is used, by having the threshold voltage of the cell NMOS be approximately +0.9V, the threshold voltage of the peripheral PMOS be approximately −0.5V and above, and the threshold voltage of the peripheral NMOS be approximately +0.5V and below. In addition, since the cell NMOS already has +0.9V of threshold voltage, back bias does not have to be applied separately to achieve the +0.9V threshold voltage, and the device with low power consumption is formed successfully.
摘要:
A tungsten polymetal gate is made by forming a gate insulation layer and a polysilicon layer on a semiconductor substrate; depositing a barrier layer on the polysilicon layer; depositing a tungsten nucleation layer on the barrier layer through an ALD process; depositing a tungsten layer on the tungsten nucleation layer through a CVD process; depositing a hard mask layer on the tungsten layer; and etching the hard mask layer, the tungsten layer, the tungsten nucleation layer, the barrier layer, the polysilicon layer, and the gate insulation layer.
摘要:
A method for forming a metal gate capable of preventing degradation in a characteristic of a gate insulating film upon formation of the metal gate. The method of forming the metal gate comprises the steps of providing a silicon substrate having device isolation films of a trench shape for defining an active region; forming a gate insulating film on the surface of the silicon substrate by means of a thermal oxidization process; sequentially forming a barrier metal film and a metal film for the gate on the gate insulating film; and patterning the metal film for the gate, the barrier metal film and the gate insulating film, wherein deposition of the barrier metal film and the metal film for the gate is performed by means of an atomic layer deposition (ALD) process or remote plasma chemical vapor deposition (CVD) process.
摘要:
Disclosed is the method of forming the gate in the semiconductor device. The present method can prevent abnormal oxidization and lifting at the interface of the stack gate consisting of polysilicon and a metal and can be applied to even the single metal gate, by replacing a re-oxidization process for recovering damage of the gate oxide film generated in the gate patterning process with the oxygen plasma treatment.
摘要:
A method for fabricating a semiconductor device includes providing a substrate having a bulb-type recessed region, forming a gate insulating layer over the bulb-type recessed region and the substrate, and forming a gate conductive layer over the gate insulating layer. The gate conductive layer fills the bulb-type recessed region. The gate conductive layer includes two or more conductive layers and a discontinuous interface between the conductive layers.
摘要:
Disclosed is a method for manufacturing a semiconductor device. This method includes the step of forming a diffusion barrier film, which is interposed between a silicon film and a metal film and functions to prevent diffusion between the silicon and metal films. The diffusion barrier film is formed of a WSixNy film or a WSix film by using an ALD process.
摘要:
Disclosed are a semiconductor devices and method of fabricating the same. Anti-etch films are formed in the top corners of the device isolation film using a material that has a different etch selectivity ratio from nitride or oxide and is not etched in an oxide gate pre-cleaning process. It is thus possible to prevent formation of a moat at the top corners of the device isolation film and the gate oxide film from being thinly formed, thereby improving reliability and electrical characteristics of the device.
摘要:
Disclosed are a semiconductor devices and method of fabricating the same. Anti-etch films are formed in the top corners of the device isolation film using a material that has a different etch selectivity ratio from nitride or oxide and is not etched in an oxide gate pre-cleaning process. It is thus possible to prevent formation of a moat at the top corners of the device isolation film and the gate oxide film from being thinly formed, thereby improving reliability and electrical characteristics of the device.