摘要:
A semiconductor laser includes: a first conductivity type semiconductor substrate; a first conductivity type lower cladding layer disposed on the substrate; a quantum well structure disposed on the lower cladding layer; a second conductivity type upper cladding disposed on the quantum well structure; a ridge including a stripe-shaped second conductivity type semiconductor of a length extending in the laser resonator length direction reaching neither semiconductor laser facet and disposed on the upper cladding layer; disordered regions, i.e, window structures, formed in the quantum well structure in the vicinity of the laser resonator facets by ion-implanting a dopant impurity; and a first conductivity type current blocking layer, disposed on the upper cladding layer on the disordered quantum well structure layer, burying the ridge. Accordingly, in the window structure regions, flow of a current that does not produce laser light is prevented, resulting in a semiconductor laser having a high power light output, a low threshold current, and a low operational current.
摘要:
A semiconductor laser includes a compound semiconductor substrate of a first conductivity type; successively disposed on said semiconductor substrate, a first conductivity type lower cladding layer, an active layer including a multiple quantum well structure, first and second upper cladding layers of a second conductivity type opposite the first conductivity type, and a first contacting layer of the second conductivity type in electrical contact with the second upper cladding layer; first and second electrodes in electrical contact with the semiconductor substrate and the first contacting layer, respectively, the semiconductor laser including opposed facets transverse to the lower cladding and the first and second upper cladding layers, the second upper cladding layer having a ridge shape that extends between the facets of the semiconductor laser and is centrally disposed on the first upper cladding layer; a first conductivity type current blocking layer disposed on and between the first upper cladding layer and the first contacting layer, contacting opposite sides of the ridge, and extending between the facets; and a window structure contiguous with each of the facets, each window structure comprising a region including a dopant impurity, each region being disposed within parts of the lower cladding layer, the active layer, and the first upper cladding layer opposite the ridge but not extending substantially into the second upper cladding layer, the multiple quantum well structure of the active layer being disordered in each window region.
摘要:
A semiconductor laser includes a first conductivity type semiconductor substrate, a first conductivity type lower cladding layer, a quantum well structure active layer including alternately laminated barrier and well layers, a disordered region extending to laser resonator facets, a second conductivity type first upper cladding layer disposed on the quantum well structure active layer, a ridge structure disposed on the first cladding layer, and having a first region not proximate the laser resonator facets including a second conductivity type second upper cladding layer and a second conductivity type first contact layer and a second region, proximate a laser resonator facet having a first conductivity type first semiconductor layer of the same material and thickness as the second upper cladding layer and a first conductivity type second semiconductor layer of same material as the first contact layer, a first conductivity type current blocking layer having a band gap energy larger than that of the second upper cladding burying the ridge structure, and a second conductivity type second contact layer disposed on the current blocking layer and the ridge structure. The band gap energy at the laser resonator facets is larger than in other regions and serves as a window structure. A refractive index distribution in the transverse direction confines laser light in the transverse direction below the ridge structure and there is no astigmatism.
摘要:
Obtain an expanded address without altering the bit number of an address which is embedded in a wobble. Generate a virtual bit which is not recorded on a disc, and which is expressed by the disparity from the rules and the presence or absence of information embedded in part or all of the wobble address.
摘要:
Obtain an expanded address without altering the bit number of an address which is embedded in a wobble. Generate a virtual bit which is not recorded on a disc, and which is expressed by the disparity from the rules and the presence or absence of information embedded in part or all of the wobble address.
摘要:
A need to effectively record data of various sizes on a large-capacity holographic memory capable of high-speed recording is achieved, for example, by curing a first part of the holographic recording which is able to be multiplex-recorded in one or more units of a predetermined volume, and by not recording/curing a second part which is not able to be multiplex-recorded in a predetermined volume at a timing when the first recording part is cured. Also the above need can be achieved by, another example, by adding dummy data to the second part. Alternatively, the second part can be recorded on another track, in which it is possible to record in different units, e.g. by bit recording in a track that utilizes a DVD recording format. According to the present examples, we can record data of various sizes on the holographic memory effectively while performing large-capacity and high-speed holographic recording.
摘要:
Each layer includes a data recording area and a test writing area divided into a plurality of small areas, wherein the small areas of the test writing area are recorded in advance so that other each layer can make a combination of recorded and unrecorded states with respect to the small area, where OPC is carried out, in a layer where OPC is carried out. Moreover, OPC is carried out to each small area, where a combination of recorded/unrecorded states of other each layer differs from each other, to thereby calculate, as the optimum power, an average value of the result of each OPC or a central value of the dispersion thereof.
摘要:
An object of the present invention is to enhance durability of the non-slip member of the shoe where a lot of non-slip protuberances are fixed to the surface of a base fabric. The shoe of the present invention comprises an upper 20 that covers an instep of a foot, a sole 21 having a ground contact surface and a non-slip member 1 provided on an outer surface of the upper 20 and/or the sole 21. The non-slip member 1 comprises a base fabric 12composed of a knitted fabric of a multilayer structure, the base fabric including an external knitted fabric layer 123 having a first surface 121 exposed to the outside and an internal knitted fabric layer 124 having a second surface 122 on a opposite side of the first surface 121 and a plurality of resin or rubber non-slip protuberances 1 that are fixed to the base fabric 12 and protrude from the first surface 121 of the external knitted fabric layer 123. A yarn constituting the external knitted fabric layer 123 is thicker than a yarn constituting the internal knitted fabric layer 124.
摘要:
A structure of arranging an vehicle occupant protecting apparatus for an automotive vehicle, which can prevent a pillar garnish from scattering when an air bag installed in a front pillar portion is expanded, is provided. An air bag 16 is housed within a space formed by a front pillar main body 38 and a pillar garnish 40 in a front pillar portion 20. When the air bag 16 expands, the pillar garnish 40 is pressed by an expanding pressure of the air bag 16, so that an opening for expanding the air bag 16 is formed between the front pillar main body 38 and the pillar garnish 40, and the air bag 16 expands into a vehicle cabin through the opening. since a non-expanding portion is formed at the air bag 16 and a hinge portion 46 is formed at the pillar garnish 40, the expanding pressure applied to the pillar garnish 40 when the air bag 16 expand is low, so that the pillar garnish 40 can be easily opened through the hinge portion 46.
摘要:
A semiconductor laser device on a GaAs substrate and having an oscillation wavelength of 1.3 &mgr;m or 1.55 &mgr;m and a method of producing the laser device. The laser device has a BTlGaAs active layer that lattice matches with the GaAs substrate. To grow the BTlGaAs active layer, organometallic vapor phase deposition is employed with cyclopentadienyl thallium as the source of Tl.