摘要:
The present invention provides a semiconductor structure with a hybrid of Ge and a group III-V material coplanar and a preparation method thereof. A heterogeneously integrated semiconductor structure with Ge and a group III-V semiconductor material coplanar includes at least one Ge substrate formed on a bulk silicon substrate, and the other substrate is the group III-V semiconductor material formed on the Ge semiconductor. The preparation method includes: preparing a Ge semiconductor layer on a bulk silicon substrate; preparing a group III-V semiconductor material layer on the Ge semiconductor layer; performing first photolithography and etching to make a patterned window to a Ge layer so as to form a recess; preparing a spacer in the recess; preparing a Ge film through selective epitaxial growth; performing chemical mechanical polishing to obtain a heterogeneously integrated semiconductor structure with a hybrid of Ge and the group III-V semiconductor material coplanar; removing the spacer and a defect part of the Ge layer close to the spacer; implementing isolation between Ge and the group III-V semiconductor material; and preparing a high performance CMOS device including a Ge channel PMOS and a group III-V channel NMOS by forming an MOS structure.
摘要:
The present invention provides an SOI semiconductor structure with a hybrid of coplanar germanium (Ge) and III-V, and a method for preparing the same. A heterogeneous integrated semiconductor structure with a hybrid of Ge and the group III-V semiconductor material coplanar on an insulator includes at least one Ge substrate formed on the insulating layer, and the other substrate is a group III-V semiconductor material formed on the Ge semiconductor. The preparation method for forming the semiconductor structure includes: preparing a global Ge on insulator substrate structure; preparing a group III-V semiconductor material layer on the Ge on insulator substrate structure; performing photolithography and etching for the first time to make a patterned window to the above of a Ge layer to form a recess; preparing a spacer in the recess; preparing a Ge film by selective epitaxial growth; performing a chemical mechanical polishing to obtain the heterogeneous integrated semiconductor structure with a hybrid of Ge and the group III-V semiconductor material being coplanar; removing the spacer and a defective Ge layer part close to the spacer; implementing isolation between Ge and the group III-V semiconductor material; and preparing a high-performance CMOS device including a Ge PMOS and a III-V NMOS by forming an MOS structure.
摘要:
The present invention provides a method for preparing an ultra-thin material on insulator through adsorption by a doped ultra-thin layer. In the method, first, an ultra-thin doped single crystal film and an ultra-thin top film (or contains a buffer layer) are successively and epitaxially grown on a first substrate, and then a high-quality ultra-thin material on insulator is prepared through ion implantation and a bonding process. A thickness of the prepared ultra-thin material on insulator ranges from 5 nm to 50 nm. In the present invention, the ultra-thin doped single crystal film adsorbs the implanted ion, and a micro crack is then formed, so as to implement ion-cut; therefore, the roughness of a surface of a ion-cut material on insulator is small. In addition, an impurity atom strengthens an ion adsorption capability of the ultra-thin single crystal film, so that an ion implantation dose and the annealing temperature can be lowered in the preparation procedure, thereby effectively reducing the damage caused by the implantation to the top film, and achieving objectives of improving production efficiency and reducing the production cost.
摘要:
The present invention provides a device system structure based on hybrid orientation SOI and channel stress and a preparation method thereof. According to the preparation method provided in the present invention, first, a (100)/(110) global hybrid orientation SOI structure is prepared; then, after epitaxially growing a relaxed silicon-germanium layer and strained silicon layer sequentially on the global hybrid orientation SOI structure, an (110) epitaxial pattern window is formed; then, after epitaxially growing a (110) silicon layer and a non-relaxed silicon-germanium layer at the (110) epitaxial pattern window, a surface of the patterned hybrid orientation SOI structure is planarized; then, an isolation structure for isolating devices is formed; and finally, a P-type high-voltage device structure is prepared in a (110) substrate portion, an N-type high-voltage device structure and/or low voltage device structures are prepared in the (100) substrate portion. In this manner, a carrier mobility is improved, Rdson of a high-voltage device is reduced, and performance of devices are improved, thereby facilitating further improvement of integration and reduction of power consumption.
摘要:
A silicon/germanium (SiGe) heterojunction Tunnel Field Effect Transistor (TFET) and a preparation method thereof are provided, in which a source region of a device is manufactured on a silicon germanium (SiGe) or Ge region, and a drain region of the device is manufactured in a Si region, thereby obtaining a high ON-state current while ensuring a low OFF-state current. Local Ge oxidization and concentration technique is used to implement a Silicon Germanium On Insulator (SGOI) or Germanium On Insulator (GOI) with a high Ge content in some area. In the SGOI or GOI with a high Ge content, the Ge content is controllable from 50% to 100%. In addition, the film thickness is controllable from 5 nm to 20 nm, facilitating the implementation of the device process. During the oxidization and concentration process of the SiGe or Ge and Si, a SiGe heterojunction structure with a gradient Ge content is formed between the SiGe or Ge and Si, thereby eliminating defects. The preparation method according to the present invention has a simple process, which is compatible with the CMOS process and is applicable to mass industrial production.
摘要:
The present invention provides a method for preparing an ultra-thin material on insulator through adsorption by a doped ultra-thin layer. In the method, first, an ultra-thin doped single crystal film and an ultra-thin top film (or contains a buffer layer) are successively and epitaxially grown on a first substrate, and then a high-quality ultra-thin material on insulator is prepared through ion implantation and a bonding process. A thickness of the prepared ultra-thin material on insulator ranges from 5 nm to 50 nm. In the present invention, the ultra-thin doped single crystal film adsorbs the implanted ion, and a micro crack is then formed, so as to implement ion-cut; therefore, the roughness of a surface of a ion-cut material on insulator is small. In addition, an impurity atom strengthens an ion adsorption capability of the ultra-thin single crystal film, so that an ion implantation dose and the annealing temperature can be lowered in the preparation procedure, thereby effectively reducing the damage caused by the implantation to the top film, and achieving objectives of improving production efficiency and reducing the production cost.
摘要:
A preparation method for a full-isolated silicon on insulator (SOI) substrate with hybrid crystal orientations and a preparation method of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) based on the method are disclosed. In the preparation method for the full-isolated SOI substrate with hybrid crystal orientations provided in the present invention, a SiGe layer is adopted to serve as an epitaxial virtual substrate layer with a first crystal orientation, so as to form a strained top silicon with the first crystal orientation; a polysilicon supporting material is adopted to serve as a support for connecting the top silicon with the first crystal orientation and a top silicon with a second crystal orientation, so that the SiGe layer below the strained top silicon with the first crystal orientation may be removed, and an insulating material is filled to form an insulating buried layer. The top silicon and the insulating buried layer formed in the method have uniform and controllable thickness, the strained silicon formed in the window and the top silicon outside the window have different crystal orientations, so as to provide higher mobility for the NMOS and the PMOS respectively, thereby improving the performance of the CMOS IC.
摘要:
A preparation method for a full-isolated silicon on insulator (SOI) substrate with hybrid crystal orientations and a preparation method of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) based on the method are disclosed. In the preparation method for the full-isolated SOI substrate with hybrid crystal orientations provided in the present invention, a SiGe layer is adopted to serve as an epitaxial virtual substrate layer with a first crystal orientation, so as to form a strained top silicon with the first crystal orientation; a polysilicon supporting material is adopted to serve as a support for connecting the top silicon with the first crystal orientation and a top silicon with a second crystal orientation, so that the SiGe layer below the strained top silicon with the first crystal orientation may be removed, and an insulating material is filled to form an insulating buried layer. The top silicon and the insulating buried layer formed in the method have uniform and controllable thickness, the strained silicon formed in the window and the top silicon outside the window have different crystal orientations, so as to provide higher mobility for the NMOS and the PMOS respectively, thereby improving the performance of the CMOS IC.