摘要:
Forming an adhesive layer on a nanoimprint lithography template or a double-sided disk. Forming the adhesive layer on the double-sided disk includes immersing the double-sided disk in a liquid adhesive composition and removing the double-sided disk from the adhesive composition. The outer layer of the double-sided disk is a carbon overcoating or an intermediate layer. The adhesive composition is dried to form a first adhesion layer adhered directly to the carbon overcoating or intermediate layer on a first side of the disk and a second adhesion layer adhered directly to the carbon overcoating or intermediate layer on a second side of the disk. Forming the adhesive layer on the nanoimprint lithography template includes applying an adhesive material to the template, allowing the template to remain motionless, and rinsing a portion of the adhesive material from the template with a solvent, and drying the template.
摘要:
Two-stage imprinting techniques capable of protecting fine patterned features of an imprint lithography template are herein described. In particular, such techniques may be used during fabrication of recessed high-contrast alignment marks for preventing deposited metal layers from coming into contact with fine features etched into the template.
摘要:
Imprint lithography templates having alignment marks with highly absorptive material. The alignment marks are insensitive to the effects of liquid spreading and can provide stability and increase contrast to alignment system during liquid imprint filling of template features.
摘要:
Imprint lithography templates having alignment marks with highly absorptive material. The alignment marks are insensitive to the effects of liquid spreading and can provide stability and increase contrast to alignment system during liquid imprint filling of template features.
摘要:
Two-stage imprinting techniques capable of protecting fine patterned features of an imprint lithography template are herein described. In particular, such techniques may be used during fabrication of recessed high-contrast alignment marks for preventing deposited metal layers from coming into contact with fine features etched into the template.
摘要:
An imprint lithography template includes a porous material defining a multiplicity of pores with an average pore size of at least about 0.4 nm. The porous material includes silicon and oxygen, and a ratio of Young's modulus (E) to relative density of the porous material with respect to fused silica (pporous/pfused silica) is at least about 10:1. A refractive index of the porous material is between about 1.4 and 1.5. The porous material may form an intermediate layer or a cap layer of an imprint lithography template. The template may include a pore seal layer between a porous layer and a cap layer, or a pore seal layer on top of a cap layer.
摘要:
An imprint lithography template or imprinting stack includes a porous material defining a multiplicity of pores with an average pore size of at least about 0.4 nm. A porosity of the porous material is at least about 10%. The porous template, the porous imprinting stack, or both may be used in an imprint lithography process to facilitate diffusion of gas trapped between the template and the imprinting stack into the template, the imprinting stack or both, such that polymerizable material between the imprinting stack and the template rapidly forms a substantially continuous layer between the imprinting stack and the template.
摘要:
An imprint lithography template including, inter alia, a body having a first thickness associated therewith; a patterning layer, having a second thickness associated therewith, comprising a plurality of features, having a third thickness associated therewith.
摘要:
An imprint lithography template including, inter alia, a body having a first thickness associated therewith; a patterning layer, having a second thickness associated therewith, comprising a plurality of features, having a third thickness associated therewith.
摘要:
An imprint lithography template includes a porous material defining a multiplicity of pores with an average pore size of at least about 0.4 nm. The porous material includes silicon and oxygen, and a ratio of Young's modulus (E) to relative density of the porous material with respect to fused silica (ρporous/ρfused silica) is at least about 10:1. A refractive index of the porous material is between about 1.4 and 1.5. The porous material may form an intermediate layer or a cap layer of an imprint lithography template. The template may include a pore seal layer between a porous layer and a cap layer, or a pore seal layer on top of a cap layer.