摘要:
Metal-insulator metal (MIM) capacitors are formed by providing a substrate having a first surface, forming thereon a first electrode having conductive and insulating regions wherein the conductive regions desirably have an area density DA less than 100%. A first dielectric is formed over the first electrode. A cavity is formed in the first dielectric, having a sidewall extending to the first electrode and exposing thereon some of the first electrode conductive and insulating regions. An electrically conductive barrier layer is formed covering the sidewall and the some of the first electrode conductive and insulating regions. A capacitor dielectric layer is formed in the cavity covering the barrier layer. A counter electrode is formed in the cavity covering the capacitor dielectric layer. External connections are formed to a portion of the first electrode laterally outside the cavity and to the counter electrode within the cavity.
摘要:
A capacitor suitable for inclusion in a semiconductor device includes a substrate, a first metallization level, a capacitor dielectric, a capacitor plate, an interlevel dielectric layer, and a second metallization level. The first metallization level overlies the substrate and includes a first metallization plate overlying a capacitor region of the substrate. The capacitor dielectric overlies the first metallization plate and includes a dielectric material such as a silicon oxide or silicon nitride compound. The capacitor plate is an electrically conductive structure that overlies the capacitor dielectric. The interlevel dielectric overlies the capacitor plate. The second metallization layer overlies the interlevel dielectric layer and may include a second metallization plate and a routing element. The routing element may be electrically connected to the capacitor plate. The metallization plates may include a fingered structure that includes a plurality of elongated elements extending from a cross bar.
摘要:
A capacitor suitable for inclusion in a semiconductor device includes a substrate, a first metallization level, a capacitor dielectric, a capacitor plate, an interlevel dielectric layer, and a second metallization level. The first metallization level overlies the substrate and includes a first metallization plate overlying a capacitor region of the substrate. The capacitor dielectric overlies the first metallization plate and includes a dielectric material such as a silicon oxide or silicon nitride compound. The capacitor plate is an electrically conductive structure that overlies the capacitor dielectric. The interlevel dielectric overlies the capacitor plate. The second metallization layer overlies the interlevel dielectric layer and may include a second metallization plate and a routing element. The routing element may be electrically connected to the capacitor plate. The metallization plates may include a fingered structure that includes a plurality of elongated elements extending from a cross bar.
摘要:
A semiconductor process and apparatus provide a high voltage deep trench capacitor structure (10) that is integrated in an integrated circuit, alone or in alignment with a fringe capacitor (5). The deep trench capacitor structure is constructed from a first capacitor plate (4) that is formed from a doped n-type SOI semiconductor layer (e.g., 4a-c). The second capacitor plate (3) is formed from a doped p-type polysilicon layer (3a) that is tied to the underlying substrate (1).
摘要:
Apparatus and methods are provided for fabricating semiconductor devices with reduced bipolar effects. One apparatus includes a semiconductor body (120) including a surface and a transistor source (300) located in the semiconductor body proximate the surface, and the transistor source includes an area (310) of alternating conductivity regions (3110, 3120). Another apparatus includes a semiconductor body (120) including a first conductivity and a transistor source (500) located in the semiconductor body. The transistor source includes multiple regions (5120) including a second conductivity, wherein the regions and the semiconductor body form an area (510) of alternating regions of the first and second conductivities. One method includes implanting a semiconductor well (120) including a first conductivity in a substrate (110) and implanting a plurality of doped regions (5120) comprising a second conductivity in the semiconductor well. An area (510) comprising regions of alternating conductivities is then formed in the semiconductor well.
摘要:
Methods and apparatus are provided for semiconductor device (60, 95, 100, 106). The semiconductor device (60, 95, 100, 106), comprises a first region (64, 70) of a first conductivity type extending to a first surface (80), a second region (66) of a second, opposite, conductivity type forming with the first region (70) a first PN junction (65) extending to the first surface (80), a contact region (68) of the second conductivity type in the second region (66) at the first surface (80) and spaced apart from the first PN junction (65) by a first distance (LDS), and a third region (82, 96-98, 108) of the first conductivity type and of a second length (LBR), underlying the second region (66) and forming a second PN junction (63) therewith spaced apart from the first surface (80) and located closer to the first PN junction (65) than to the contact region (68). The breakdown voltage is enhanced without degrading other useful properties of the device (60, 95, 100, 106).
摘要:
An electronic device can include a substrate, a buried insulating layer overlying the substrate, and a semiconductor layer overlying the buried insulating layer, wherein the semiconductor layer is substantially monocrystalline. The electronic device can also include a conductive structure extending through the semiconductor layer and buried insulating layer and abutting the substrate, and an insulating spacer lying between the conductive structure and each of the semiconductor layer and the buried insulating layer.
摘要:
A dual current path LDMOSFET transistor (40) is provided which includes a substrate (400), a graded buried layer (401), an epitaxial drift region (404) in which a drain region (416) is formed, a first well region (406) in which a source region (412) is formed, a gate electrode (420) formed adjacent to the source region (412) to define a first channel region (107), and a current routing structure that includes a buried RESURF layer (408) in ohmic contact with a second well region (414) formed in a predetermined upper region of the epitaxial layer (404) so as to be completely covered by the gate electrode (420), the current routing structure being spaced apart from the first well region (406) and from the drain region (416) on at least a side of the drain region to delineate separate current paths from the source region and through the epitaxial layer.
摘要:
A dual current path LDMOSFET transistor (40) is provided which includes a substrate (400), a graded buried layer (401), an epitaxial drift region (404) in which a drain region (416) is formed, a first well region (406) in which a source region (412) is formed, a gate electrode (420) formed adjacent to the source region (412) to define a first channel region (107), and a current routing structure that includes a buried RESURF layer (408) in ohmic contact with a second well region (414) formed in a predetermined upper region of the epitaxial layer (404) so as to be completely covered by the gate electrode (420), the current routing structure being spaced apart from the first well region (406) and from the drain region (416) on at least a side of the drain region to delineate separate current paths from the source region and through the epitaxial layer.
摘要:
A semiconductor device may include a semiconductor substrate having a first dopant type. A first semiconductor region within the semiconductor substrate may have a plurality of first and second portions (44, 54). The first portions (44) may have a first thickness, and the second portions (54) may have a second thickness. The first semiconductor region may have a second dopant type. A plurality of second semiconductor regions (42) within the semiconductor substrate may each be positioned at least one of directly below and directly above a respective one of the first portions (44) of the first semiconductor region and laterally between a respective pair of the second portions (54) of the first semiconductor region. A third semiconductor region (56) within the semiconductor substrate may have the first dopant type. A gate electrode (64) may be over at least a portion of the first semiconductor region and at least a portion of the third semiconductor region (56).