摘要:
A semiconductor device package having pre-formed and placed through vias and a process for making such a package is provided. One or more signal conduits are placed in a holder that is subsequently embedded in an encapsulated semiconductor device package. The ends of the signal conduits are exposed and the signal conduits are then used as through package vias, providing signal-bearing pathways between interconnects or contacts on the bottom and top of the package. Holders can be provided in a variety of geometries and materials, depending upon the nature of the application. Further, multiple holders with signal conduits can be provided in a single package to provide for more complex interconnect configuration demands in, for example, system-in-a-package applications.
摘要:
A semiconductor device package having pre-formed and placed through vias and a process for making such a package is provided. One or more signal conduits are placed in a holder that is subsequently embedded in an encapsulated semiconductor device package. The ends of the signal conduits are exposed and the signal conduits are then used as through package vias, providing signal-bearing pathways between interconnects or contacts on the bottom and top of the package. Holders can be provided in a variety of geometries and materials, depending upon the nature of the application. Further, multiple holders with signal conduits can be provided in a single package to provide for more complex interconnect configuration demands in, for example, system-in-a-package applications.
摘要:
A semiconductor device package having pre-formed and placed through vias and a process for making such a package is provided. One or more signal conduits are coupled to a lead frame that is subsequently embedded in an encapsulated semiconductor device package. The free end of signal conduits is exposed while the other end remains coupled to a lead frame. The signal conduits are then used as through package vias, providing signal-bearing pathways between interconnects or contacts on the bottom and top of the package and the leads.
摘要:
A method for forming signal conduits before encapsulation for incorporation as through vias in a semiconductor device package is provided. One or more signal conduits are formed through photolithography and metal deposition on a metal film or substrate. After removing photoresistive material, the semiconductor device package is built by encapsulating the signal conduits along with any semiconductor die and other parts of the package. The ends of the signal conduits are exposed and the signal conduits can then be used as through vias, providing signal-bearing pathways between interconnects or contacts on the bottom and top of the package, and electrical contacts of the semiconductor die. Using this method, signal conduits can be provided in a variety of geometric placings in the semiconductor device package. A semiconductor device package including the signal conduits made from the above method is also provided.
摘要:
A semiconductor device package having pre-formed and placed through vias and a process for making such a package is provided. One or more signal conduits are coupled to a lead frame that is subsequently embedded in an encapsulated semiconductor device package. The free end of signal conduits is exposed while the other end remains coupled to a lead frame. The signal conduits are then used as through package vias, providing signal-bearing pathways between interconnects or contacts on the bottom and top of the package and the leads.
摘要:
A method for forming through vias in a semiconductor device package prior to package encapsulation is provided. One or more signal conduits are formed through photolithography and metal deposition on a printed circuit substrate having interconnect pads. After removing photoresistive material, the semiconductor device package is built by encapsulating the signal conduits along with any semiconductor die, wire bonding, and other parts of the package. Free ends of each signal conduit are exposed and the signal conduits are used as through vias to provide signal-bearing pathways between connections from a top-mounted package to a printed circuit substrate interconnect and electrical contacts of the semiconductor die or package contacts. Using this method, signal conduits can be provided in a variety of geometric placings on the printed circuit substrate for inclusion in a semiconductor device package. A semiconductor device package incorporating the pre-fabricated through vias is also provided.
摘要:
A method for forming through vias in a semiconductor device package prior to package encapsulation is provided. One or more signal conduits are formed through photolithography and metal deposition on a printed circuit substrate having interconnect pads. After removing photoresistive material, the semiconductor device package is built by encapsulating the signal conduits along with any semiconductor die, wire bonding, and other parts of the package. Free ends of each signal conduit are exposed and the signal conduits are used as through vias to provide signal-bearing pathways between connections from a top-mounted package to a printed circuit substrate interconnect and electrical contacts of the semiconductor die or package contacts. Using this method, signal conduits can be provided in a variety of geometric placings on the printed circuit substrate for inclusion in a semiconductor device package. A semiconductor device package incorporating the pre-fabricated through vias is also provided.
摘要:
Microelectronic packages having layered interconnect structures are provided, as are methods for the fabrication thereof. In one embodiment, the method includes forming a first plurality of interconnect lines in ohmic contact with a first bond pad row provided on a semiconductor. A dielectric layer is deposited over the first plurality of interconnect lines, the first bond pad row, and a second bond pad row adjacent the first bond pad row. A trench via is then formed in the dielectric layer to expose at least the second bond pad row therethrough. A second plurality of interconnect lines is formed in ohmic contact with the second bond pad row within the trench via. The second plurality of interconnect lines extends over the first bond pad row and is electrically isolated therefrom by the dielectric layer to produce at least a portion of the layered interconnect structure.
摘要:
Wafer level packages and methods for producing wafer level packages having delamination-resistant redistribution layers are provided. In one embodiment, the method includes building inner redistribution layers over a semiconductor die. Inner redistribution layers include a body of dielectric material containing metal routing features. A routing-free dielectric block is formed in the body of dielectric material and is uninterrupted by the metal routing features. An outer redistribution layer is produced over the inner redistribution layers and contains a metal plane, which is patterned to include one or more outgassing openings overlying the routing-free dielectric block. The routing-free dielectric block has a minimum width, length, and depth each at least twice the thickness of the outer redistribution layer.
摘要:
Microelectronic packages having layered interconnect structures are provided, as are methods for the fabrication thereof. In one embodiment, the method includes forming a first plurality of interconnect lines in ohmic contact with a first bond pad row provided on a semiconductor. A dielectric layer is deposited over the first plurality of interconnect lines, the first bond pad row, and a second bond pad row adjacent the first bond pad row. A trench via is then formed in the dielectric layer to expose at least the second bond pad row therethrough. A second plurality of interconnect lines is formed in ohmic contact with the second bond pad row within the trench via. The second plurality of interconnect lines extends over the first bond pad row and is electrically isolated therefrom by the dielectric layer to produce at least a portion of the layered interconnect structure.