摘要:
Methods for fabricating microelectronic packages, such as Fan-Out Wafer Level Packages, and microelectronic packages are provided. In one embodiment, the method includes placing a first semiconductor die on a temporary substrate, forming an electrically-conducive trace in contact with at least one of the first semiconductor die and the temporary substrate, and encapsulating the first semiconductor die and the electrically-conductive trace within a molded panel. The temporary substrate is removed to reveal a frontside of the molded panel through which the electrically-conducive trace is at least partially exposed. At least one redistribution layer is formed over the frontside of the molded panel, the at least one redistribution layer comprises an interconnect line in ohmic contact with the electrically-conducive trace.
摘要:
Methods for forming electronic assemblies are provided. A device substrate having a plurality of electronic components embedded therein is provided. The device substrate is attached to a carrier substrate using an adhesive material. A plurality of cuts are formed through the device substrate to divide the device substrate into a plurality of portions. Each of the plurality of portions includes at least one of the electronic components. A force is applied to each of the plurality of portions in a direction away from the carrier substrate to remove the plurality of portions from the carrier substrate.
摘要:
Microelectronic packages having layered interconnect structures are provided, as are methods for the fabrication thereof. In one embodiment, the method includes forming a first plurality of interconnect lines in ohmic contact with a first bond pad row provided on a semiconductor. A dielectric layer is deposited over the first plurality of interconnect lines, the first bond pad row, and a second bond pad row adjacent the first bond pad row. A trench via is then formed in the dielectric layer to expose at least the second bond pad row therethrough. A second plurality of interconnect lines is formed in ohmic contact with the second bond pad row within the trench via. The second plurality of interconnect lines extends over the first bond pad row and is electrically isolated therefrom by the dielectric layer to produce at least a portion of the layered interconnect structure.
摘要:
A surface mount semiconductor device is assembled by positioning an array of semiconductor dies with an array of metallic ground plane members between and beside the semiconductor dies. The arrays of dies and ground plane members are encapsulated in a molding compound. A redistribution layer is formed on the arrays of dies and ground plane members. The redistribution layer has an array of sets of redistribution conductors within a layer of insulating material. The redistribution conductors interconnect electrical contacts of the dies with external electrical contact elements of the device. As multiple devices are formed at the same time, adjacent devices are separated (singulated) by cutting along saw streets between the dies. The molding compound is interposed between tie bars of the ground plane members and the insulating material of the redistribution layer in the saw streets, and at the side surfaces of the singulated devices.
摘要:
A method for forming through vias in a semiconductor device package prior to package encapsulation is provided. One or more signal conduits are formed through photolithography and metal deposition on a printed circuit substrate having interconnect pads. After removing photoresistive material, the semiconductor device package is built by encapsulating the signal conduits along with any semiconductor die, wire bonding, and other parts of the package. Free ends of each signal conduit are exposed and the signal conduits are used as through vias to provide signal-bearing pathways between connections from a top-mounted package to a printed circuit substrate interconnect and electrical contacts of the semiconductor die or package contacts. Using this method, signal conduits can be provided in a variety of geometric placings on the printed circuit substrate for inclusion in a semiconductor device package. A semiconductor device package incorporating the pre-fabricated through vias is also provided.
摘要:
A semiconductor device package having pre-formed and placed through vias and a process for making such a package is provided. One or more signal conduits are placed in a holder that is subsequently embedded in an encapsulated semiconductor device package. The ends of the signal conduits are exposed and the signal conduits are then used as through package vias, providing signal-bearing pathways between interconnects or contacts on the bottom and top of the package. Holders can be provided in a variety of geometries and materials, depending upon the nature of the application. Further, multiple holders with signal conduits can be provided in a single package to provide for more complex interconnect configuration demands in, for example, system-in-a-package applications.
摘要:
Embodiments of a method for fabricating stacked microelectronic packages are provided, as are embodiments of stacked microelectronic packages. In one embodiment, the method includes producing a partially-completed stacked microelectronic package including a package body having a vertical package sidewall, a plurality microelectronic devices embedded within the package body, and package edge conductors electrically coupled to the plurality of microelectronic devices and extending to the vertical package sidewall. A flowable conductive material is applied on the vertical package sidewall and contacts the package edge conductors. Selected portions of the flowable conductive material are then removed to define, at least in part, electrically-isolated sidewall conductors electrically coupled to different ones of the package edge conductors.
摘要:
A method of packaging a semiconductor die includes the use of an embedded ground plane or drop-in embedded unit. The embedded unit is a single, stand-alone unit with at least one cavity. The embedded unit is placed on and within an encapsulation area of a process mounting surface. The embedded unit may have different sizes and shapes and a number of different cavities that can be placed in a predetermined position on a substrate, panel or tape during processing of semiconductor dies that are embedded into redistributed chip package (RCP) or wafer level package (WFL) panels. The embedded unit provides the functionality and design flexibility to run a number of embedded units and semiconductor dies or components having different sizes and dimensions in a single processing panel or batch and reduces die drift, movement or skew during encapsulation and post-encapsulation cure.
摘要:
A semiconductor device package having pre-formed and placed through vias and a process for making such a package is provided. One or more signal conduits are coupled to a lead frame that is subsequently embedded in an encapsulated semiconductor device package. The free end of signal conduits is exposed while the other end remains coupled to a lead frame. The signal conduits are then used as through package vias, providing signal-bearing pathways between interconnects or contacts on the bottom and top of the package and the leads.
摘要:
Embodiments of a method for fabricating stacked microelectronic packages are provided, as are embodiments of stacked microelectronic packages. In one embodiment, the method includes producing a partially-completed stacked microelectronic package including a package body having a vertical package sidewall, a plurality microelectronic devices embedded within the package body, and package edge conductors electrically coupled to the plurality of microelectronic devices and extending to the vertical package sidewall. A flowable conductive material is applied on the vertical package sidewall and contacts the package edge conductors. Selected portions of the flowable conductive material are then removed to define, at least in part, electrically-isolated sidewall conductors electrically coupled to different ones of the package edge conductors.