Abstract:
An LED flat lamp including a housing with a light-emitting area at the bottom thereof. The internal side thereof undergoes a reflexion treatment. At least one LED is disposed within the housing. A power connector is extended from the LED to the outside. The LED is installed on a circuit board. A light guide plate is installed at one side of the LED within the housing. The light exit side of the light guide plate is provided with a microstructure for a uniform light exit. Moreover, an optical film unit is attached to the bottom of the light guide plate such that the light-emitting area of the housing is covered with the optical film unit. The optical film unit consists of one or several brightness enhancement films and one or several diffusers. In this way, the problem of glaring light directly emitted by the prior art is resolved. The LED flat lamp in accordance with the invention can emit a non-glaring light and can be modularized into a standardized product.
Abstract:
This invention is about a window interface layer in a light-emitting diode which comprises an n-type GaAs substrate with an n-type ohmic electrode at the bottom side thereof; an n-type AlGaInP cladding layer formed atop the substrate; an undoped AlGaInP active layer formed atop the n-type cladding layer; a p-AlGaInP cladding layer formed atop the active layer; a p-type window layer made of GaP; a p-type ohmic electrode formed atop the p-type window layer; and a highly doped p-type interface layer made of GaxIn1-xP (0.6≦x≦0.9) and interposed between the p-type cladding layer and p-type window layer wherein the highly doped p-GaInP interface layer possesses a band gap which is higher than that of the active layer and, however, smaller than that of the p-type cladding layer, and wherein the lattice constant lies between GaAs and GaP. In this way, the p-GaInP interface layer is interposed between a p-GaP window layer and a p-AlGaInP cladding layer for enhancing the film quality and the luminous efficiency as well as improving the electric property.
Abstract translation:本发明涉及发光二极管中的窗口界面层,其包括在其底侧具有n型欧姆电极的n型GaAs衬底; 形成在衬底顶上的n型AlGaInP包覆层; 形成在n型包覆层顶上的未掺杂的AlGaInP有源层; 形成在有源层顶上的p-AlGaInP包层; 由GaP制成的p型窗口层; 形成在p型窗口层顶上的p型欧姆电极; 以及由Ga x In 1-x P(0.6 <= x <= 0.9)制成的高掺杂p型界面层,并且介于p型包覆层 和p型窗口层,其中高度掺杂的p-GaInP界面层具有比有源层的带隙高的带隙,然而,小于p型包覆层的带隙,并且其中晶格常数位于 GaAs和GaP。 以这种方式,p-GaInP界面层插入在p-GaP窗口层和p-AlGaInP包覆层之间,以提高膜质量和发光效率以及改善电性能。
Abstract:
A mobile communication device comprises a housing enclosing a circuit board that has communication components disposed thereon. The housing has opposite first and second surfaces. An antenna element is formed on the first surface of the housing for receiving and/or transmitting electromagnetic signals. An inner conductive layer is disposed on the second surface of the housing. The inner conductive layer is electrically connected to the antenna element and in signal communication with the circuit board.
Abstract:
A semiconductor chip pad structure and a method for manufacturing the same, wherein a flat area at the center of the terminal pad and a roughened area at the periphery thereof are provided by use of the mask photolithograph technique and the roughening process. The central area provides a sufficient adhering force for the ball bond while the peripheral area prevents the wire-bonding vibrating energy from the lateral transmission to the external side of the terminal pad. In this way, the ball bond for the terminal pad may meet the wire-bonding requirements. Moreover, the ball bond quality is ensured.
Abstract:
The main objective of present invention is to provide a manufacturing method of light emitting diode that utilizes metal diffusion bonding technology. AlInGaP light emitting diode epitaxial structure on a temporary substrate is bonded to a permanent substrate having a thermal expansion coefficient similar to that of the epitaxial structure, and then the temporary substrate is removed to produce an LED having a vertical structure and better performance. The other objective of the present invention is to provide a high performance LED that uses metal diffusion technology and wet chemical etching technology to roughen the LED surface in order to improve light extraction efficiency.
Abstract:
A light emitting diode and manufacturing method thereof. The light emitting diode comprises a n-type semiconductor layer formed on a substrate, an active layer formed on the n-type semiconductor layer, a p-type cladding layer formed on the active layer, and a hydrogen-adsorbing layer formed on the p-type cladding layer. The hydrogen-adsorbing layer adsorbs the hydrogen atoms near the interface to the p-type cladding layer, thereby enhancing the doping concentration of p-type cladding layer, and forming a low-resist ohmic contact by which the performance and reliability of opto-electronic devices is improved.
Abstract:
An LED die structure and a method for manufacturing the bottom terminal of the LED die structure, wherein the LED die includes a substrate, a light-emitting layer positioned at the top of the substrate, at least one bottom terminal positioned at the bottom of the substrate, at least one top terminal positioned at the top of the light-emitting layer, and at least one side terminal positioned at the side of the bottom of the substrate, and wherein the method comprises the following steps: a) recessing the bottom side of the wafer to a predetermined height when the LED is formed in a wafer type; b) coating the metal material to the bottom of the wafer and to the inside of the recesses; and c) dividing the wafer along the recesses into dies. In this way, the bottom terminal and the side terminal are formed at the bottom of the substrate of the die. Moreover, the LED die structure enhances the quality of the electric connection between the die-bonding paste and the LED die.
Abstract:
A semiconductor chip pad structure and a method for manufacturing the same, wherein a flat area at the center of the terminal pad and a roughened area at the periphery thereof are provided by use of the mask photolithograph technique and the roughening process. The central area provides a sufficient adhering force for the ball bond while the peripheral area prevents the wire-bonding vibrating energy from the lateral transmission to the external side of the terminal pad. In this way, the ball bond for the terminal pad may meet the wire-bonding requirements. Moreover, the ball bond quality is ensured.
Abstract:
The main objective of present invention is to provide a manufacturing method of light emitting diode that utilizes metal diffusion bonding technology. AlInGaP light emitting diode epitaxial structure on a temporary substrate is bonded to a permanent substrate having a thermal expansion coefficient similar to that of the epitaxial structure, and then the temporary substrate is removed to produce an LED having a vertical structure and better performance. The other objective of the present invention is to provide a high performance LED that uses metal diffusion technology and wet chemical etching technology to roughen the LED surface in order to improve light extraction efficiency.
Abstract:
The invention provides a method and device for light generation wherein the device comprises a lower electrode, a substrate formed on the lower electrode, a triangle mesa structure formed on the substrate for lateral confinement of light, a triangle optical cavity formed in the mesa structure, an upper electrode formed on the mesa structure, and a plurality of contact spots formed on the upper electrode corresponding to the maxima of optical field intensity for at least one optical mode on a lateral plane in the triangle optical cavity. Another embodiment of the device according to the invention further comprises a plurality of triangle mesa structures, along with a light output structure for directing and controlling light output from the device, which are formed on the substrate in various topologies such as a matrix or an array.