Abstract:
An apparatus supports smart assistant services with a plurality of smart service providers. The apparatus includes an audio device that receives a speech signal having a user utterance, captures the user utterance when the user utterance includes a user wake word, and sends the captured utterance to a backend computing device. The backend computing device replaces the user wake word with specific wake words associated with different smart service providers. The processed utterances are then sent to selected smart service providers. The backend computing device subsequently constructs feedback to the user utterance based on voice responses from the different smart service providers. The backend computing device then passes a digital representation of the feedback to the audio device, and the audio device converts the digital representation to an audio reply to the user utterance.
Abstract:
A programmable thermostat supports at least one attribute where each different attribute values may support different sets of thermostatic settings. The programmable thermostat may be programmed based on the different attribute values rather than on temperature set points that are traditionally mapped to programmed times. Each set may include settings for a plurality of controlled equipment including a heating/cooling system, fan, ventilator, humidifier, and/or de-humidifier. Each embodiment may support attribute values associated with an occupancy attribute (which is indicative whether or not people are occupying an environmental entity) and/or a scenario attribute (which flexibly maps different thermostatic settings to different scenario attribute values). Stored configuration data about the thermostatic settings may be organized as a tree structure, where the leaves correspond to the thermostatic settings. A programmable thermostat/ventilator controller may also instruct a ventilator system to run during an adjustable pre-occupancy purge time duration before an environmental entity is occupied.
Abstract:
A programmable thermostat supports at least one attribute where each different attribute values may support different sets of thermostatic settings. The programmable thermostat may be programmed based on the different attribute values rather than on temperature set points that are traditionally mapped to programmed times. Each set may include settings for a plurality of controlled equipment including a heating/cooling system, fan, ventilator, humidifier, and/or de-humidifier. Each embodiment may support attribute values associated with an occupancy attribute (which is indicative whether or not people are occupying an environmental entity) and/or a scenario attribute (which flexibly maps different thermostatic settings to different scenario attribute values). Stored configuration data about the thermostatic settings may be organized as a tree structure, where the leaves correspond to the thermostatic settings. A programmable thermostat/ventilator controller may also instruct a ventilator system to run during an adjustable pre-occupancy purge time duration before an environmental entity is occupied.
Abstract:
A mounting device facilitates connecting an Internet of Things (IoT) device, such as thermostatic radiator valve (TRV) and automatic temperature balanced actuator (ABA), to a hydronic heating/cooling system to control the temperature of a room by changing the flow of hot/cold water through radiator. The mounting devices includes a male section and a female section, which is attached to the IoT device. The mounting device may be installed in two stages. First, a male section is attached to a component of the hydronic heating/cooling system (for example, a valve or manifold) by threading the male section onto the component. Second, a female section, is positioned to male section and locked into place by rotating a rotary sleeve. The female section (with the IoT device) may be easily removed by rotating the rotary sleeve into an unlock position.
Abstract:
A health condition of a person may be assessed from a thermal sensor signal. By increasing performance indices of a thermal camera (for example, resolution, frame rate, sensitivity), operation may be extended to identification verification, biometric data extraction and health condition analysis, and so forth. Prediction may be carried out by monitoring a time sequence of thermal images, and consequently early warning of the health condition may be provided. The apparatus may be used for, but not limited to, personalization of smart home devices through supervised and reinforcement learnings. The application of the apparatus may be, but not limited to, smart homes, smart buildings and smart vehicles, and so forth.
Abstract:
The present invention provides apparatuses, methods, and computer readable media for supporting communications for a plurality of transmitter-receiver pairs on a common frequency spectrum. A transmitting device transmits a consecutively sequenced signal sequentially containing messages to a corresponding receiving device. A duty cycle adjustment circuit determines the duration between adjacent messages so that the consecutively sequenced signal is characterized by a randomized duty cycle. The duty cycle adjustment circuit selects the duration from a sequence that is characterized by an average duration. The duty cycle adjustment circuit obtains the duration from an array by determining an index from a function of a random variable. A receiving device receives a consecutively sequenced signal sequentially containing messages from a transmitting device, where the consecutively sequenced signal is characterized by a randomized duty cycle. A processing circuit detects the messages and initiates an error signal when a predetermined number of consecutive invalid messages are detected.
Abstract:
Aspects of the invention provide apparatuses, methods, and systems that support measuring and conveying energy consumption by an electrical device. An apparatus includes an energy sensor that measures an incremental energy value consumed by an electrical device. Apparatus obtains the incremental energy value, accumulates an energy usage measurement in accordance with the incremental energy value, provides requested information about energy consumption of the electrical device in response to a request from a network controller, and adjusts the energy usage measurement in accordance with the requested information. The total energy consumption may be partitioned into at least one energy component, in which the at least one energy component corresponds to the energy consumption of the electrical device during an associated time interval. A network controller may use the energy consumption information to determine a new set temperature for a thermostat unit that instructs the device control logic.
Abstract:
The present invention provides methods and apparatuses for determining a liquid level inside a container by using an effective capacitance associated with one or more sense electrodes that are located inside the container. Embodiments may support different types of liquids, including water, and support different electrical appliances, including electric kettles, coffee makers, and water treatment appliances having a non-transparency housing such as stainless steel and black color Lucite or glass that cannot directly indicate the water level. A value of capacitance characteristic associated with a sensing electrode is determined. The water level may be displayed to the user on any kind of electronic panel, e.g., liquid crystal display (LCD), light emitting diode (LED) display, or vacuum fluorescent display (VFD). Also, a correction factor may be applied to a determined capacitance associated with a sensing electrode to compensate for the operating temperature of the sensor electrode and the liquid.
Abstract:
Aspects of the invention provide apparatuses, methods, and systems that support measuring and conveying energy consumption by an electrical device. An apparatus includes an energy sensor that measures an incremental energy value consumed by an electrical device. Apparatus obtains the incremental energy value, accumulates an energy usage measurement in accordance with the incremental energy value, provides requested information about energy consumption of the electrical device in response to a request from a network controller, and adjusts the energy usage measurement in accordance with the requested information. The total energy consumption may be partitioned into at least one energy component, in which the at least one energy component corresponds to the energy consumption of the electrical device during an associated time interval. A network controller may use the energy consumption information to determine a new set temperature for a thermostat unit that instructs the device control logic.
Abstract:
An apparatus supports smart assistant services with a plurality of smart service providers. The apparatus includes an audio device that receives a speech signal having a user utterance, captures the user utterance when the user utterance includes a user wake word, and sends the captured utterance to a backend computing device. The backend computing device replaces the user wake word with specific wake words associated with different smart service providers. The processed utterances are then sent to selected smart service providers. The backend computing device subsequently constructs feedback to the user utterance based on voice responses from the different smart service providers. The backend computing device then passes a digital representation of the feedback to the audio device, and the audio device converts the digital representation to an audio reply to the user utterance.