MATRIX-CONTROLLED PRINTHEAD FOR AN ELECTROCHEMICAL ADDITIVE MANUFACTURING SYSTEM

    公开(公告)号:US20240368792A1

    公开(公告)日:2024-11-07

    申请号:US18772882

    申请日:2024-07-15

    Abstract: Printhead for a 3D manufacturing system that uses metal electrodeposition to construct parts; embodiments utilize a grid of anodes to achieve high quality parts with features that may be small and detailed. To support grids with thousands or millions of anodes, the printhead may use matrix control with row and column drivers similar to display backplanes. Unlike display backplanes where the design goal is to display images using minimal current, the printhead may be optimized for high current density for fast electrodeposition, and for anode longevity. Current density may exceed 1000 mA per cm-squared, at least an order of magnitude greater than that of display backplanes. Anode longevity may be enhanced by using relatively large anodes compared to the grid pitch of the printhead, by lengthening the conductive paths through anodes, or both. Embodiments may be constructed by adding anode and insulation layers on top of matrix-controlled switching circuits.

    Methods of electroplating a target electrode

    公开(公告)号:US12104270B2

    公开(公告)日:2024-10-01

    申请号:US18311888

    申请日:2023-05-03

    CPC classification number: C25D3/02 C25D17/007 C25D21/14

    Abstract: A method of electroplating a target electrode comprises establishing a first electric current through an electrolytic solution, comprising a quantity of an electrically charged material, an initial electrode, and a transitional electrode, so that a quantity of the electrically charged material is converted to a quantity of an electrically neutral material, which is electroplated, as a deposit, onto the transitional electrode; and establishing a second electric current through the electrolytic solution, the transitional electrode, and the target electrode so that a quantity of the electrically neutral material from the deposit is converted to a quantity of the electrically charged material, which is dissolved into the electrolytic solution, and a quantity of the electrically charged material in the electrolytic solution is converted to a quantity of the electrically neutral material, which is electroplated onto the surface of the target electrode.

    SYSTEMS AND METHODS FOR MANUFACTURING ELECTRICAL COMPONENTS USING ELECTROCHEMICAL DEPOSITION

    公开(公告)号:US20240240347A1

    公开(公告)日:2024-07-18

    申请号:US18620603

    申请日:2024-03-28

    Abstract: A method of making an electrical component includes transmitting electrical energy from a power source through one or more deposition anodes, through an electrolyte solution, and to an intralayer electrical-connection feature of a build plate, such that material is electrochemically deposited onto the intralayer electrical-connection feature and forms an interlayer electrical-connection feature. The method also includes securing a dielectric material so that the dielectric material contacts and electrically insulates the intralayer electrical-connection feature and contacts and at least partially electrically insulates the interlayer electrical-connection feature. The method additionally includes depositing a seed layer onto the dielectric material and the interlayer electrical-connection feature, electrochemically depositing material onto the seed layer, to form at least one second intralayer electrical-connection feature of the electrical component, and removing any one or more portions of the seed layer onto which no portion of the at least one second intralayer electrical-connection feature is formed.

    SYSTEMS AND METHODS FOR ELECTROCHEMICAL ADDITIVE MANUFACTURING OF ELECTRONIC DEVICES

    公开(公告)号:US20240076791A1

    公开(公告)日:2024-03-07

    申请号:US18165200

    申请日:2023-02-06

    CPC classification number: C25D1/003 B33Y10/00

    Abstract: An electrochemical additive manufacturing method includes coupling a first electronic device to a build plate and positioning the build plate into an electrolyte solution. The method also includes positioning a deposition anode array into the electrolyte solution, connecting the cathode portion of the build plate and one or more deposition anodes of the abide array to a power source. The method also includes transmitting electrical energy from the power source, through the one or more deposition anodes, through the electrolyte solution, and to the cathode portion of the build plate, such that material is deposited onto the cathode portion and forms at least a sidewall of a shell that encases the first electronic device against the build plate when the first electronic device is coupled to the build plate. The shell and the first electronic device form a second electronic device.

    ELECTROCHEMICAL ADDITIVE MANUFACTURING METHOD USING DEPOSITION FEEDBACK CONTROL

    公开(公告)号:US20220084840A1

    公开(公告)日:2022-03-17

    申请号:US17535437

    申请日:2021-11-24

    Abstract: A system and method of using electrochemical additive manufacturing to add interconnection features, such as wafer bumps or pillars, or similar structures like heatsinks, to a plate such as a silicon wafer. The plate may be coupled to a cathode, and material for the features may be deposited onto the plate by transmitting current from an anode array through an electrolyte to the cathode. Position actuators and sensors may control the position and orientation of the plate and the anode array to place features in precise positions. Use of electrochemical additive manufacturing may enable construction of features that cannot be created using current photoresist-based methods. For example, pillars may be taller and more closely spaced, with heights of 200 μm or more, diameters of 10 μm or below, and inter-pillar spacing below 20 μm. Features may also extend horizontally instead of only vertically, enabling routing of interconnections to desired locations.

    Electrochemical additive manufacturing of interconnection features

    公开(公告)号:US11232956B2

    公开(公告)日:2022-01-25

    申请号:US17112909

    申请日:2020-12-04

    Abstract: A system and method of using electrochemical additive manufacturing to add interconnection features, such as wafer bumps or pillars, or similar structures like heatsinks, to a plate such as a silicon wafer. The plate may be coupled to a cathode, and material for the features may be deposited onto the plate by transmitting current from an anode array through an electrolyte to the cathode. Position actuators and sensors may control the position and orientation of the plate and the anode array to place features in precise positions. Use of electrochemical additive manufacturing may enable construction of features that cannot be created using current photoresist-based methods. For example, pillars may be taller and more closely spaced, with heights of 200 μm or more, diameters of 10 μm or below, and inter-pillar spacing below 20 μm. Features may also extend horizontally instead of only vertically, enabling routing of interconnections to desired locations.

Patent Agency Ranking