摘要:
An integrated circuit may include at least one active optical device and a waveguide coupled thereto. The waveguide may include a superlattice including a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
摘要:
A method for making a semiconductor device may include providing a substrate, and forming at least one MOSFET adjacent the substrate by forming a superlattice including a plurality of stacked groups of layers and a semiconductor cap layer on an uppermost group of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming source, drain, and gate regions defining a channel through at least a portion of the semiconductor cap layer.
摘要:
A semiconductor device may include a first monocrystalline layer comprising a first material having a first lattice constant. A second monocrystalline layer may include a second material having a second lattice constant different than the first lattice constant. The device may also include a lattice matching layer between the first and second monocrystalline layers and comprising a superlattice. The superlattice may include a plurality of groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween.
摘要:
A method for making an electronic device may include forming a selectively polable superlattice comprising a plurality of stacked groups of layers. Each group of layers of the selectively polable superlattice may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent silicon portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The method may further include coupling at least one electrode to the selectively polable superlattice for selective poling thereof.
摘要:
A method for making a semiconductor device may include forming a superlattice layer including a plurality of stacked groups of layers, and forming a stress layer above the strained superlattice layer to induce a strain therein. Each group of layers of the superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
摘要:
A semiconductor device may include at least one pair of spaced apart stress regions, and a strained superlattice layer between the at least one pair of spaced apart stress regions and including a plurality of stacked groups of layers. Each group of layers of the strained superlattice layer may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
摘要:
A semiconductor device may include a substrate, an insulating layer on the substrate, and a semiconductor layer on the insulating layer on a side thereof opposite the substrate. The semiconductor device may further include a superlattice on the semiconductor layer on a side thereof opposite the insulating layer. The superlattice may include a plurality of stacked groups of layers, with each group comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions.
摘要:
A method for making a semiconductor device may include forming a plurality of shallow trench isolation (STI) regions in a semiconductor substrate. Further, a plurality of layers may be deposited over the substrate to define respective superlattices over the substrate between adjacent STI regions and to define respective non-monocrystalline regions over the STI regions. The method may further include selectively removing at least portions of the non-monocrystalline regions using at least one active area (AA) mask.
摘要:
A semiconductor device may include a semiconductor substrate and a plurality of shallow trench isolation (STI) regions in the substrate. More particularly, at least some of the STI regions may include divots therein. The semiconductor device may further include a respective superlattice between adjacent STI regions, and respective non-monocrystalline stringers in the divots.
摘要:
A method for making a semiconductor device may include forming an insulating layer adjacent a substrate, forming a superlattice adjacent a semiconductor layer, and positioning the semiconductor layer adjacent a face of the insulating layer opposite the substrate. The method may further include forming a gate overlying the superlattice, and forming source and drain regions on the semiconductor layer so that the superlattice extends therebetween to define a channel. The superlattice may include a plurality of stacked groups of layers with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy band-modifying layer thereon. The energy band-modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.