Abstract:
A bovine monitoring system may include a rumination sensor, a motion sensor, a posture sensor. The rumination sensor may detect chewing by sensing jaw motion. The motion sensor may detect motion. The posture sensor may detect orientation of the bovine asset through detection of gravitational acceleration, detection of gyroscopic rotation, or a combination of gravitational acceleration and gyroscopic rotation. Using the recorded rumination, motion, arid posture sensors, the bovine asset monitoring system may identify aberrations in the estrous cycle or physical or mental health of the bovine assets. A bovine monitoring system may include a thermal scanning device to detect localized heating of the vulva area of the bovine asset, which may he used to identify aberrations in the estrous cycle or physical or mental health of the bovine assets.
Abstract:
The invention relates to a data network for automatically monitoring voluntary behaviors of individual animals of an animal herd. The individual animals of the animal herd each have a node of the data network. A further node is attached at a location which an animal preferably approaches in the course of a behavior to be monitored. In the event that the animal approaches the node, communication occurs between the nodes, in which communication one node is identified by the other node and a central data-processing system is informed that the two nodes have come into contact. The communication between the two nodes occurs by means of the transfer of electrical signals in a closed electrical alternating-current circuit, which also passes, among other things, through the body of the animal as an electrical conductor.
Abstract:
The present invention relates to a method for calculating the body condition score—BCS, the weight of an animal and its state of fertility by means of the mathematical processing of some characteristic morphological traits of the observed subject, which makes use of at least one contact or no-contact detection device of the profile 109 of the animal, at least a data processing unit and a program that implements a specific mathematical method of interpretation. By such a method, the determination of the body condition and its synthetic index or fattening index or FI, is independent of species, race, gender, age and absolute size of the examined animal. This method is also robust to possible errors of positioning of the apparatus by an operator.
Abstract:
A method for health monitoring comprises electronically receiving location information for a dairy livestock that is generated by a plurality of identification devices positioned in a pen that operate in conjunction with a tag worn by the dairy livestock. The method stores the location information associated with the dairy livestock, the location information comprising a location of the dairy livestock within the pen at each of a plurality of times during a first time period. The method determines, based on at least a portion of the stored location information, a turn index parameter indicating a number of times the particular dairy livestock reverses direction during the first time period. The method determines whether the particular dairy livestock is likely to be in estrus based at least in part upon whether the determined turn index parameter is in excess of a baseline turn index parameter by more than a predefined amount.
Abstract:
Methods and compositions for synchronizing the time of insemination in gilts are provided. More particularly, methods and compositions for synchronizing the time of insemination in gilts using a gonadotropin-releasing hormone and a hormone for synchronizing estrus are provided.
Abstract:
A system includes sensors for transmitting data on a low power and/or short range transmission link, and one or more coordinators in wireless communication with the sensors. The coordinators convert signals received via the low power and/or short range transmission link to a longer range transmission link. A base station is in wireless communication with the coordinators via the longer range transmission link so that data generated by the sensors is transferred to the base station via the coordinators.
Abstract:
Disclosed are a system, device and process for monitoring physical and physiological features of livestock through a unique monitoring system and device. Basic and Smart tags are placed on livestock to monitor, among other things, temperature, movement, location, posture, pulse rate, and other physical and physiological features. Information is relayed from Basic tags, in one embodiment, to Smart tags that requests the information and receives the information from the basic tags. Smart tags send information to a mobile unit controller and/or home base so that requested information is sent to an end user that monitors the livestock for signs of illness. Potentially ill animals are segregated from the herd for further evaluation and minimization of exposure risk to the rest of the herd. This early detection system saves livestock and ensures a healthier herd for livestock farmers.
Abstract:
In certain embodiments, a method for estrus detection includes storing location information associated with a dairy livestock. The stored location information includes a coordinate location of the dairy livestock within a free stall pen at each of a plurality of times during a time period. The method further includes determining, based on at least a portion of the stored location information, one or more movement parameters associated with the dairy livestock. The method further includes determining, based on one or more movement parameters associated with the dairy livestock, whether the dairy livestock is likely to be in estrus.
Abstract:
In certain embodiments, a method includes storing location information associated with a dairy livestock. The stored location information includes a location of the dairy livestock within a free stall pen at each of a plurality of times during a time period. The method further includes determining, based on at least a portion of the stored location information, one or more movement parameters associated with the dairy livestock. The method further includes determining, based on the one or more movement parameters associated with the dairy livestock, whether the dairy livestock is likely unhealthy.
Abstract:
The present apparatus and method provides for real-time automated, non-invasive infrared thermography information of an animal to be used for both thermal and behavioural measurement, thereby providing an earlier and more accurate predictor of onset of disease, growth states, or reproductive states in that animal. More specifically, the present system and method provide for the use of thermal images (taken, for example, at a water station) to obtain both temperature and behavioural information about one or more animals at a time, and to utilize that information to determine the health, growth, or reproductive state of the animal. The combination of thermal biometric data, such as radio frequency identification infrared thermography, and behavioural biometric information, such as behavioural fidgets can be used to detect early-onset of these biological steady and non-steady states in animals.