Abstract:
Methods and apparatuses are provided for musculoskeletal tissue engineering. For example, a scaffold apparatus is provided which comprises microspheres of selected sizes and/or composition. The microspheres are layered to have a gradient of microsphere sizes and/or compositions. The scaffold provides a functional interface between multiple tissue types.
Abstract:
An interbody fusion device having an accordion-like structure, wherein the device in inserted into the disc space in its collapsed configuration and then expanded into its expanded configuration by compressing the accordion-like portion of the device. In some embodiments, a pre-formed tube with an accordion-like structure over a portion of its length is inserted in a relaxed (collapsed) configuration, giving the tube a minimum possible diameter. This tube has a cable running through it that is fixed to a distal end portion of the tube and extends past the proximal end portion of the tube to the outside of the patient. Once the tube is positioned on the rim of the endplate, the proximal end of the cable is pulled, thereby tensioning the cable and causing the accordion portion of the tube to become shorter in length but larger in diameter.
Abstract:
A spinal implant comprises a first vertebral engaging surface and a second vertebral engaging surface. A wall extends between the surfaces. The wall includes an inner bone growth resistant layer and an outer layer. Systems and methods of use are disclosed.
Abstract:
This disclosure describes a membrane configured to guide bone and tissue regeneration for a bone defect. The membrane may comprise a first layer, a second layer, one or more perforations, a binder, and/or other components. The first layer of the membrane may be configured to contact bone. The first layer may include pores configured to promote ingrowth of bone regenerating cells into the first layer. In some implementations, the first layer may be a continuous sheet of microporous material without large perforations. The second layer may be configured to substantially prevent fibrous connective tissue from growing into the bone defect. The second layer may comprise a relatively dense structure. The second layer may be fixedly coupled to the first layer. In some implementations, the perforations may comprise co-axial through-holes having common dimensions through the first layer and the second layer. The perforations may be configured to enhance ossification.
Abstract:
The invention relates to a ceramic surface replacement prosthesis (I) for the natural femur head (3), comprising an outer spherical surface (5) and an inner receiving space (7) with an inner lateral surface (4). The aim of the invention is to prevent necrosis of the bone tissue as a result of the implantation process, thus also preventing a loss of inner bone tissue. According to the invention, this is achieved in that the inner lateral surface (4) is provided with an osseointegrative coating (6) or is designed in an osseointegrative manner at least in some areas, and/or the lateral surface (4) is designed as a self forming thread (8).
Abstract:
A prosthesis arranged to be coupled to a bone. The prosthesis comprises a substrate (2) having a surface (6). The surface (6) of the substrate (2) has a first area and a second area, the first area being treated such that osteointegration is promoted more than in the second area. The interface (12) between the first and second areas forms an alignment mark to assist alignment of the prosthesis relative to a bone. The prosthesis is arranged to be at least partially inserted into a bone cavity such that the position of the alignment mark relative to the bone cavity is indicative of the angle of insertion of the prosthesis or the alignment mark provides a position reference for determining the implanted position of the prosthesis in the cavity. A method of manufacturing the prosthesis and a method of implanting the prosthesis are also provided.
Abstract:
A prosthesis arranged to be coupled to a bone. The prosthesis comprises a substrate (2) having a surface (6). The surface (6) of the substrate (2) has a first area and a second area, the first area being treated such that osseointegration is promoted more than in the second area. The interface (12) between the first and second areas forms an alignment mark to assist alignment of the prosthesis relative to a bone. The prosthesis is arranged to be at least partially inserted into a bone cavity such that the position of the alignment mark relative to the bone cavity is indicative of the angle of insertion of the prosthesis or the alignment mark provides a position reference for determining the implanted position of the prosthesis in the cavity. A method of manufacturing the prosthesis and a method of implanting the prosthesis are also provided.
Abstract:
An implantable glenoid prosthesis comprising a glenoid member including a glenoid body and a glenoid fixation member is disclosed. The glenoid body includes a surface for mating with a humeral head. The glenoid fixation member is constructed and arranged to flex when a force is applied to the glenoid body.
Abstract:
Bone implantable devices and methodologies permit careful application of biologically active substances and management of bone growth processes. The device includes a body defining a carrier receiving area for locating adjacent bone. Carrier material is located in the carrier receiving area. Substance is delivered onto carrier material through a port. A pathway delivers substance from the carrier receiving area to the bone surface. The body may be in the form of a spinal fusion cage, facet fusion screw, artificial joint, bone fixation plate, interbody graft, IM nail, hip stem, or other bone-to-bone appliances or bone-to-device appliances. In use, carrier is installed in the carrier receiving area of the device. The device is then implanted adjacent a bone. The substance is applied to the carrier for subsequent delivery to the bone. By doping carrier material after device implantation, inadvertent contact of the substance with non-target bone is more easily eliminated.
Abstract:
An acetabular cup component can include a hemispherical first shell, an annular ring, and a second shell. The annular ring can laterally extend from and circumscribe an outer surface of the first shell and can include a first portion for engaging an anatomy. The second shell can include a second portion for engaging the anatomy adjoining the first portion. Another acetabular cup component can include a first shell, a second shell, and a support ring. The support ring can be coupled to an end portion of the first shell and can include a portion for engaging an anatomy and a rim for engaging a bearing. Another acetabular cup component can include a hemispherical inner shell composed of Cobalt, a hemispherical intermediate shell coupled to an outer surface of the inner shell by a diffusion bond, and a hemispherical outer shell coupled to an outer surface of the intermediate shell.