System and method for deaerating beverages

    公开(公告)号:US11785968B2

    公开(公告)日:2023-10-17

    申请号:US16884348

    申请日:2020-05-27

    申请人: BEVCORP LLC

    发明人: Lawrence M. Lucas

    摘要: A method of producing a carbonated beverage comprising a blend of water and syrup having a predetermined final carbonation level. The method includes the steps of: introducing CO2 into a flowing stream of a product blend comprising water, syrup and dissolved oxygen, such that CO2 is dissolved in the product blend; deaerating the CO2-containing product blend by introducing the blend into a vented atmospheric vessel, the interior of which is at ambient pressure with a headspace maintained above the surface of the liquid within the vessel, whereby dissolved oxygen is released from the product blend and vented from the vessel; pumping the deaerated product blend from the vessel, wherein the deaerated blend includes dissolved CO2 at an intermediate carbonation level less than the final carbonation level; and carbonating the deaerated product blend to the final carbonation level downstream of the vented vessel to produce a carbonated beverage for subsequent packaging. A system for performing the method is also provided, as well as a method of producing a beverage using nitrogen deaeration.

    HIGH-EFFICIENCY AIRLIFT PUMP
    3.
    发明公开

    公开(公告)号:US20230416125A1

    公开(公告)日:2023-12-28

    申请号:US18453281

    申请日:2023-08-21

    摘要: This document describes a gas streaming device for use between an injection port and a mixing chamber within an airlift pump, and an airlift pump with the gas streaming device. The gas streaming device includes a planar plate with multiple holes extending therethrough, where the holes are dimensioned to direct the gas into multiple micro-streams for streaming air from the injection port into the mixing chamber. An airlift pump in combination with such a gas streaming device is useful for removing anomalously high concentrations of dissolved gas in a liquid. The increased efficiency for this invention may also enable this type of pump to be economic in other applications where it is desirable to lift a liquid or induce flow.

    ULTRASONIC TREATMENT APPARATUS AND FINE BUBBLE SUPPLY METHOD

    公开(公告)号:US20230264154A1

    公开(公告)日:2023-08-24

    申请号:US18017279

    申请日:2020-07-29

    摘要: To realize excellent durability of an apparatus, realize a dissolved gas amount suitable for propagation of ultrasonic waves, and stably generate fine bubbles that further comply with a treatment using ultrasonic waves. An ultrasonic treatment apparatus according to the present invention includes: a treatment part capable of accommodating a treatment liquid and an object to be treated; an ultrasonic generator that is provided in the treatment part and applies ultrasonic waves to the object to be treated; and a circulation path for circulating the treatment liquid in the treatment part, in which a fine bubble generator which performs deaeration on an extracted treatment liquid and generates fine bubbles in the treatment liquid, is provided to the circulation path, in series with a treatment liquid extraction pipe. The fine bubble generator has two or more narrow portions each having an opening flow path with a size narrower than an inside diameter of the treatment liquid extraction pipe, in which the opening flow paths of the narrow portions adjacent to each other are configured to prevent the treatment liquid from proceeding straight, and an opening cross-sectional area at each pressure reduction zone satisfies a predetermined relation.

    Microfluidic System Suitable for Liquid Mixing and Method

    公开(公告)号:US20230191346A1

    公开(公告)日:2023-06-22

    申请号:US17294371

    申请日:2019-04-03

    申请人: BioFab Limited

    摘要: A microfluidic system and method suitable for liquid mixing. The microfluidic system uses a pump (400) as the driving source, which draws at least two liquid samples that are to be mixed into the pump (400). Some air is drawn into the pump (400) as well. The system is also comprised of a mixing reservoir (203). The two liquids drawn into the pump (400) are pushed into the mixing reservoir (203). The air bubbles generated by the air have a stirring effect on the mixed liquid in the mixing reservoir (203). After the air bubbles burst, left at rest, and the air has risen to the top of the mixing reservoir (203), the mixed liquid is drawn back to the pump (400) and fed to the outlet (103) for subsequent detection steps. The addition of an antifoaming agent will prevent the accumulation of air bubbles during the mixing process. In the system, the valves (501, 502, 503, 504) and the sensors (601, 602, 603, 604) in the microfluidic channels (301, 302, 303, 304) will be used for the operation of the microfluidic system and for the precise control of the flow.