Abstract:
In a device for the catalytic depolymerisation of material containing hydrocarbon, containing at least one container which can be filled with the material, at least one conveyor device having a device for introducing heat into the interior of the conveyor device and having at least one inlet opening and at least one outlet opening spaced apart therefrom are provided in the container, wherein the inlet opening is or can be disposed in the lower region of the container and the outlet opening is or can be disposed in the upper region of the container for circulating and heating the material to the evaporation temperature. In a method for the catalytic depolymerisation of hydrocarbon-containing material using at least one container which can be filled with the material, at least one carrier medium is filled into the container, the material is introduced into the carrier medium, the carrier medium comprising the material is set in a rotary motion, the material is circulated through a conveyor device having a device for introducing heat and is heated until said material is brought to evaporation temperature, the rising vapour is condensed and the distillate components are discharged as product.
Abstract:
An electrochemical process and device for the controlled and uniform heating of electrically-conductive fluids, the process or device having at least one reactor and at least one power source with at least one electrode and at least one additional conductive material for direct heating of the fluid and for producing electrochemical changes of the fluid to result in at least one property change of the fluid and at least one product.
Abstract:
A rapid start reactor is provided that can be used, for example, in a water gas shift reactor of a fuel processor. A reactor has a catalyst support structure with one or more surfaces overlaid with an active coating that includes a catalyst. The active coating heats upon exposure to a non-thermal energy source. The reactor also includes a generator of non-thermal energy for applying non-thermal energy to the active coating. Methods for operating such a reactor during transient and/or start-up conditions are also provided.
Abstract:
An apparatus and method for synthesizing nanostructures. In one embodiment, the apparatus includes a reactor having a reaction zone and a conductive susceptor positioned in the reaction zone. The method includes the steps of transporting a gas mixture having an aerosolized catalyst, a feedstock and a carrier gas into the reaction zone of the reactor, inductively heating the reaction zone, and regulating a flow rate of the gas mixture to allow the catalyst to spend a sufficient amount of time in the reaction zone for the growth of nanostructures.
Abstract:
An apparatus for synthesizing nanostructures. In one embodiment, the apparatus includes a heating device that defines a reaction zone therein and a susceptor made of a ferromagnetic material with a Curie temperature and placed in the reaction zone, where the Curie temperature substantially corresponds to a temperature at which the growth of desired nanostructures occurs and the heating device is capable of heating the susceptor substantially at the Curie temperature.
Abstract:
A method of fabrication processing a pre-preg material includes applying electromagnetic heating to a composition including a fiber and a resin. The electromagnetic heating is conducted with at least one fringing field capacitor utilizing radio frequency (RF) alternating current (AC) and controlling cross-linking of the resin in the composition via the electromagnetic heating.
Abstract:
A system for the production of a polycrystalline silicon product is disclosed. The system includes a reaction chamber, a susceptor, an induction unit, and a plurality of energy sources. The reaction chamber has a reactor wall, and the susceptor encircles the reactor wall. The induction heater surrounds the susceptor, and has multiple induction coils for producing heat in the susceptor. The coils are grouped into a plurality of zones. The plurality of energy sources supply electric current to the coils. Each energy source is connected with the coils of at least one zone.
Abstract:
The present invention relates to a fluidized bed reactor, comprising a reaction tube, a distributor and a heating device, the reaction tube and the distributor at the bottom of the reaction tube composing a closed space, the distributor comprising a gas inlet and a product outlet, and the reaction tube comprising a tail gas outlet and a seed inlet at the top or upper part respectively, characterized in that the reaction tube comprises a reaction inner tube and a reaction outer tube, and the heating device is an induction heating device placed within a hollow cavity formed between the external wall of the reaction inner tube and the internal wall of the reaction outer tube, wherein the hollow cavity is filled with hydrogen, nitrogen or inert gas for protection, and is able to maintain a pressure of about 0.01 to about 5 MPa; and also to a process of producing high purity granular polysilicon using the reactor. The fluidized bed reactor according to the present invention uses induction heating to heat directly the silicon particles inside the reaction chamber, such that the temperature of the reaction tube is lower than that inside the reaction chamber, which accordingly avoids deposition on the tube wall and results in more uniform heating, and thus is useful for large diameter fluidized bed reactors with much increased output for a single reactor.
Abstract:
Solid materials may be processed using shockwaves produced in a supersonic gaseous vortex. A high-velocity stream of gas may be introduced into a reactor. The reactor may have a chamber, a solid material inlet, a gas inlet, and an outlet. The high-velocity stream of gas may be introduced into the chamber of the reactor through the gas inlet. The high-velocity stream of gas may effectuate a supersonic gaseous vortex within the chamber. The reactor may be configured to facilitate chemical reactions and/or comminution of solid feed material using tensive forces of shockwaves created in the supersonic gaseous vortex within the chamber. Solid material may be fed into the chamber through the solid material inlet. The solid material may be processed within the chamber by nonabrasive mechanisms facilitated by the shockwaves within the chamber. The processed material that is communicated through the outlet of the reactor may be collected.
Abstract:
The invention relates to a device for producing starting materials, combustible substances and fuels from organic substances. Said claimed device comprises a reactor (10) that comprises an introduction device (11) for the organic substances, an evacuation device (12) for the reaction products and a device (13) for feeding reaction energy for the transformation of organic substances into reaction products. The invention is characterized in that the introduction device (11) comprises pneumatic means (24) for the supply of solid material.