Abstract:
A process for the production of a multi-layer composite comprising applying a coating layer from a pigmented coating composition A onto the back face of a transparent plastic film and then applying an NIR-opaque coating layer from a pigmented coating composition B, wherein the pigment content of coating composition A consists 50 to 100 wt. % of black pigment with low NIR absorption and 0 to 50 wt. % of further pigment, which is selected in such a way that coating layer A′ exhibits low NIR absorption and that the multi-layer composite exhibits a brightness L* of at most 10 units, wherein the pigment content of coating composition B is either a pigment content PC1 consisting 90 to 100 wt. % of aluminum flake pigment and 0 to 10 wt. % of further pigment, which is selected in such a way that NIR-opaque coating layer B′ exhibits low NIR absorption, or a pigment content PC2 comprising
Abstract:
To provide paint films which have excellent heat-radiating properties and with which many colors with light colors in the main can be obtained. (Means of Resolution). A paint film which has excellent heat-radiating properties which comprises an undercoat paint film layer which contains from 1 to 20 mass % with respect to the total solid fraction of the paint film of carbon black and a top-coat paint film layer which contains 1 to 40 mass % with respect to the total solid fraction of the paint film of a pearl pigment and which does not contain aluminum powder and the paint film thickness of the top-coat paint film layer is from 11 to 50 μm which can be formed with a method of forming paint films which have excellent heat-radiating properties wherein an undercoat paint which contains from 1 to 20 mass % with respect to the total solid fraction of the paint film of carbon black is applied and hardened and an undercoat paint film layer is formed and then a top-coat paint which contains 1 to 40 mass % with respect to the total solid fraction of the paint film of a pearl pigment and which does not contain aluminum powder is applied over said undercoat paint film layer and hardened and a top-coat paint film layer of which the paint film thickness is from 11 to 50 μm is formed.
Abstract:
Disclosed herein is a multilayer coating including at least one ground coat layer, the at least one ground coat layer including at least one non-platelet-shaped titanium dioxide pigment (T); at least one midcoat layer on top of the at least one ground coat layer, and at least one clearcoat layer on top of the at least one midcoat layer; and having a lightness L* according to CIELab in the viewing angle range from −15° to +45° of at least 80; in the viewing angle range from +75° to +110° of at least 70, if a metal effect pigment is contained in the midcoat layer; in the viewing angle range from +75° to +110° of at least 75, if no metal effect pigment is contained in the midcoat layer. Further disclosed herein are a method for producing such multilayer coating and a multilayer coated substrate.
Abstract:
The present invention relates to a method for coating substrate materials with polymers containing lustre pigments, in which a substrate has applied to it a curable coating, followed by a coat of lustre pigments or lustre pigment mixtures and then a clear coat.
Abstract:
Provided is a method for forming a multilayer coating film that is capable of forming a multilayer coating film that has pearly luster with excellent blackness and high reflectance of an infrared laser. The method for forming a multilayer coating film includes applying a carbon black pigment-containing first colored paint (X) to form a first colored coating film; applying a second colored paint (Y) containing a pigment (A) that is a transparent or translucent base material coated with a metal oxide to form a second colored coating film; applying a clear paint (Z) to form a clear coating film; and heating the first colored coating film, the second colored coating film, and the clear coating film separately or simultaneously to cure these films, wherein the first colored coating film has a lightness L*(45°) of less than 20, the multilayer coating film has a lightness L*(45°) of less than 20, and the multilayer coating film has a diffuse reflectance of 10% or more at a wavelength of 905 nm.
Abstract:
A process for applying a two-tone color effect coating to a substrate including applying an accent powder basecoating composition including film-forming material; reaction product as described herein; flow control agent; and first color effect additive, to a first predetermined portion of a surface of a substrate; at least partially curing the accent basecoating; applying a main liquid or powder basecoating composition having a different color effect additive to a second predetermined portion of the substrate, such that a portion of the accent basecoat is not contacted by the main basecoating composition; at least partially curing the main basecoating composition; applying a topcoating composition over the accent basecoat and main basecoat and curing the resulting composite coating, such that the first portion of the substrate has a different color effect than the second portion of the substrate to provide a two-tone color effect coated substrate.
Abstract:
A titanium-mica composite material comprising (i) mica, (ii) a first coating composed of titanium dioxide, coated on the surface of the mica, and (iii) a second coating compound of powder particles of at least one metal selected from the group consisting of cobalt, nickel, copper, zinc, tin, gold, and silver coated on the first coating.
Abstract:
Disclosed is a paint film which has excellent heat-radiating properties which comprises an undercoat paint film layer which contains from 1 to 20 mass % with respect to the total solid fraction of the paint film of carbon black and a top-coat paint film layer which contains 1 to 40 mass % with respect to the total solid fraction of the paint film of a pearl pigment and which does not contain aluminum powder and the paint film thickness of the top-coat paint film layer is from 11 to 50 μm.
Abstract:
A process for the production of a multi-layer composite comprising applying a coating layer from a pigmented coating composition A onto the back face of a transparent plastic film and then applying an NIR-opaque coating layer from a pigmented coating composition B, wherein the pigment content of coating composition A consists 50 to 100 wt. % of black pigment with low NIR absorption and 0 to 50 wt. % of further pigment, which is selected in such a way that coating layer A′ exhibits low NIR absorption and that the multi-layer composite exhibits a brightness L* of at most 10 units, wherein the pigment content of coating composition B is either a pigment content PC1 consisting 90 to 100 wt. % of aluminum flake pigment and 0 to 10 wt. % of further pigment, which is selected in such a way that NIR-opaque coating layer B′ exhibits low NIR absorption, or a pigment content PC2 comprising
Abstract:
A process for applying a two-tone color effect coating to a substrate including applying an accent powder basecoating composition including film-forming material; reaction product as described herein; flow control agent; and first color effect additive, to a first predetermined portion of a surface of a substrate; at least partially curing the accent basecoating; applying a main liquid or powder basecoating composition having a different color effect additive to a second predetermined portion of the substrate, such that a portion of the accent basecoat is not contacted by the main basecoating composition; at least partially curing the main basecoating composition; applying a topcoating composition over the accent basecoat and main basecoat and curing the resulting composite coating, such that the first portion of the substrate has a different color effect than the second portion of the substrate to provide a two-tone color effect coated substrate.