Abstract:
A heat exchanger having at least one inner conduit comprising of a second tubular member coaxially disposed within a first tubular member, wherein the second tubular member outer surface is in contact with the first tubular member inner surface. Each of the first and second tubular members is composed of a material with an approximately 0.015 inch maximum wall thickness.
Abstract:
The invention relates to a method and a coating device for applying a cladding layer onto the inner side of a carrier layer during the production of a multilayer heavy-duty pipe, with a pressure-exerting unit having a force application unit. A stable application of the cladding layer is achieved by having the coating device comprise a rolling tool with the pressure-exerting unit and the force application unit, and by providing the pressure-exerting unit with at least one pressure roller having a diameter that is smaller than the inside diameter of the heavy-duty pipe to be produced, and with at least one support element acting diametrically counter thereto with a supporting force in the operating state.
Abstract:
A method of manufacturing a rectangular tube having a stepped portion includes: forming V-shaped grooves on a rectangular tube at surfaces of an end thereof in a direction parallel to a longitudinal direction thereof; and pressing each of the surfaces having the V-shaped grooves formed thereon with a rotating roll from outside to inside, whereby the end of the rectangular tube is radially reduced.
Abstract:
An apparatus for manufacturing a multi-layer pipe is provided. The apparatus includes a ram extruding a matrix pipe, which is formed by inserting one or more insert pipes having different diameters into a receiving pipe, with a constant compression force, a heat-treatment unit heat-treating the matrix pipe extruded from the ram, and a drawing unit drawing, with a constant drawing force, the matrix pipe passing through the heat-treatment unit into a multi-layer pipe having a predefined diameter.
Abstract:
Fluid conveying pipes and processes of forming such pipes using friction stir welding. The fluid conveying pipes are formed from a pipe section that includes a first barrel coaxially and concentrically disposed within a second barrel. The first barrel and the second barrel are each formed from one or more sections or plates where longitudinal extending facing edges of the plates are friction stir welded (FSW) together along a seam(s) that extends longitudinally from the first end to the second end thereof. A plurality of the pipe sections can be connected together end to end using circumferential FSW seams to form a pipe.
Abstract:
A multi-walled pipe and a method for its manufacture involves a steel sheet forming a steel source layer to which a nickel source layer is applied on at least one or both sides. A solder source layer is applied to the one nickel source layer, or one of the two, or both, nickel source layers. The multi-walled pipe is formed from a strip of the coated metal sheet, by means of rolling. The walls of the pipe are soldered by means of heating. In one form, the heating takes place by radiation. In another, it takes place by induction.
Abstract:
A durable, semi-rigid, single-layered flexible duct having a sleeve made of a single aluminum layer and a resilient wound element disposed at the mid-point of the overlap region of the aluminum layer. The wound element imparts corrugations to the sleeve, such that the duct is extendible between a compacted configuration suitable for storage and for shipping and an extended configuration suitable for installation in a gas transport arrangement. Closely and evenly-spaced ridges that are situated in between the corrugations, add rigidity and durability to the duct. The inward-facing surface of the aluminum ribbon is substantially smooth and featureless except for the helical corrugations imparted by wire winding and the closely and evenly-spaced ridges. The aluminum sleeve is of a predetermined thickness rendering the duct substantially rigid when in an extended configuration and enabling the duct to maintain its substantial rigidity upon extension from a compacted configuration.
Abstract:
A method for producing tubes for use in a heat exchanger that includes providing first and second metallic strips on a rolling mill train with predetermined breaking points using a device, deforming the strips to form the a tube, separating individual tubes from the tube at the predetermined breaking points, sensing positions of the predetermined breaking points in the strips using a sensing element which the strips pass through, transmitting signals relating to sensed positions of the predetermined breaking points of the strips to a computer, comparing the positions of the predetermined breaking points in the first and the second strips using the computer on the basis of the signals transmitted, and sending signals to the device using the computer which lead to the alignment of the positions of the predetermined breaking points in the first and the second strips.
Abstract:
A durable, semi-rigid, flexible duct including a pair of coaxial sleeves, namely an inner sleeve and an outer sleeve disposed parallel to and about the inner sleeve and a resilient wound element disposed between the sleeves. Each of the inner sleeve and the outer sleeve constitutes an aluminum foil ribbon. The wound element imparts corrugations to the two sleeves, such that the duct is extendible between a compacted configuration suitable for storage and for shipping and an extended configuration suitable for installation in a gas transport arrangement. Closely and evenly-spaced ridges that are situated in between the corrugations, add rigidity and durability to the duct. Both the inner sleeve and the outer sleeve are of a predetermined thickness rendering the duct substantially rigid when in an extended configuration and enabling the duct to maintain its substantial rigidity upon extension from a compacted configuration.
Abstract:
An elongated product is formed such that first a core is formed, the outer surface of the core being made of plastic. Thereafter, a tubular metal layer is extruded such that the layer is seamless. When the metal layer is extruded, a clearance (16) is allowed between the metal layer and the core. After the metal layer has cooled, the outer surface of the core is arranged against the inner surface of the metal layer. An adhesive action is arranged between the core and the metal layer and a permanent compressive force is arranged, which compressive force compresses the core and the metal layer together.