摘要:
The present invention provides a system and method for economically using compressed air as automobile power source, comprising: a compressed air power device, which includes automobile air storage tubes (1) to store a sufficient amount of high-pressure compressed air and a cylinder-combined engine consisting of the first and second cylinders (9)(10), and which can make full use of the compressed air to produce driving power; a mechanism to produce, store and provide high-pressure compressed air, which includes a boiler-type high-pressure compressed air producing and storing device, abbreviated as boiler-type HCAPS device (4), to be able to use electricity during periods of low energy demand (off-peak) such as at night simultaneously recovering the by-produced heat for central heating, and pressurizing and inflating into the automobile air storage tubes (1) during daytimes; brake energy recovery and regeneration devices, which include a spring reserving-releasing device and/or a compressed air reserving-releasing device to save the compressed air in the automobile air storage tubes (1) for saving the driving power; an inner gear ring assembly, which includes an inner gear ring (2) gearing meshing with inner acting gears (45), with the first and second accelerating gears (72)(92), with a flywheel front inner meshing gear (48) and reset gears (46), for transmitting torque and mixing/outputting power; some clutch transmission devices and a controller, which controls orderly coordinated operation of devices and mechanisms.
摘要:
An air supply system for a whole vehicle, which is intended to solve the technical problem that it is hard to provide a multi-position and controllable air supply solution for an electric vehicle. A first air source device, a control valve and a pipeline constitute a first-type air supply system, the first-type air supply system has multiple air passages, each air passage is respectively provided with an air supply port, and a controller can switch operating states of the control valve, control the opening or closing of the multiple air passages, and achieve controllable air supply effects in multiple positions. A second air source device and several pipelines constitute a second type of air supply system, the second type of air supply system has multiple air passages, each air passage is respectively provided with an air supply port, and a controller can switch operating states of the second air source device, control the opening or closing of the multiple air passages, and achieve controllable air supply effects. The first type of air supply system and the second type of air supply system are rationally configured on the electric vehicle, so as to achieve multi-position and controllable air supply effects.
摘要:
An accelerator pedal device having a pedal arm working in conjunction with an accelerating pedal, a housing to rotatably support the pedal arm around a prescribed pivot axis line between a rest position and a maximum applied position, a hysteresis generation mechanism that comes in contact with the vicinity of an upper end of the pedal arm to generate hysteresis in a pedal force of the accelerator pedal, and an active control mechanism to push back the pedal arm toward the rest position under prescribed conditions between the pivot axis line and the hysteresis generation mechanism. The active control mechanism includes a drive source provided in the housing, and a return lever that is rotated in the same direction as the direction of the swinging of the pedal arm in conjunction with the drive source and is detachably engaged with the vicinity of the upper end of the pedal arm.
摘要:
The utility model relates to hybrid drive for vehicles that significantly decreases the consumption of fuel because it uses a turbine motor (7), which is turned on solely when the charge of the accumulator batteries (3) drops and always works at best rpm. The device increases the distance covered by the vehicle without need for frequent recharge of the batteries from the power supply network. Furthermore, the turbine motor is lighter than the petrol piston engine and in the same time more efficient. The device includes installed accumulator batteries (3) that supply power to at least one electric motor coupled via transmission to the drive wheels of the vehicle, and fuel tank (4) supplying fuel to turbine motor (7) coupled via reducer (11) to generator (6) that is connected to the accumulator batteries. Control unit (9) monitors the charge of the accumulator batteries (3) and turns on and off the turbine motor (7). All six embodiments comprise a device (10) to recharge the accumulator batteries from the power supply network when the driver of the vehicle has access to it.
摘要:
The present invention describes an electric vehicle with hybrid drive system, which provides optimization of speed, power and maximizing efficiency levels. In one embodiment, the vehicle includes at least one driven wheel, an electric motor connected to the driven wheel through a fixed transmission system or a continuous variable transmission (CVT) unit, an internal combustion engine (ICE) connected to the driven wheel through a fixed transmission system or a CVT unit and a selector switch to select the modes of power supply to the electric vehicle. Further, the electric motor is powered by a battery power pack and the ICE is powered by a hydrocarbon fuels stored in a hydrocarbon fuel tank. Furthermore, the different position of selector switch provides different modes of the power supply to the vehicle. In another embodiment, the electric motor is adapted to be operated as a generator.
摘要:
An energy conversion apparatus using recovered energy sources including motor vehicle kinetic energy and wind resistance, supplemented by liquefied air transferred to the vehicle and by solar radiation thereto. The energy sources are combined, as available, to drive a compressor for supplying intake working fluid of a motor vehicle prime mover.
摘要:
A vehicle, driven by compressed air, includes at least one air compressor, an air reservoir, and an air-propelled motor. The at least one air compressor, which is positioned between a body and a wheel axle of the vehicle, is configured to generate compressed air responding to vibrations of the wheel axle caused by irregularities in the road surface. The air reservoir, which is connected to the air-compressor, is configured to reserve the compressed air. The air-propelled motor, which is connected to the air reservoir, is driven by the compressed air.
摘要:
The present invention combines the principles of a gas turbine engine with an electric transmission system. A method and apparatus are disclosed for utilizing metallic and ceramic elements to store heat energy derived from a regenerative braking system. The subject invention uses this regenerated electrical energy to provide additional energy storage over conventional electrical storage methods suitable for a gas turbine engine. The subject invention provides engine braking for a gas turbine engine as well as reducing fuel consumption.
摘要:
A powertrain for driving a motor vehicle includes an internal combustion engine including first and second rotors supported for rotation about an axis, a first epicyclic gear unit including a first component fixed against rotation, a first driving component, and a first driven component, a first power path alternately producing a first drive connection between the driven component and the first rotor, and opening said first drive connection, and a second power path producing a second drive connection between the driven component and the second rotor, and opening said second drive connection.
摘要:
A compressed air powered vehicle is disclosed. The vehicle includes a vehicle chassis having wheels. An electric drive motor drivingly engages at least one of the wheels. An electric generator is electrically connected to the electric drive motor, and an air motor drivingly engaging the electric generator. A compressed air source is pneumatically connected to the air motor, and an air compressor is provided on the chassis and pneumatically connected to the compressed air source to replenish compressed air in the compressed air tanks as needed.