摘要:
A method for recovering hydrochloric acid and metal oxides from a chloride liquor is described. The method uses a chloride liquor including the metal and mixing the liquor and a matrix solution to produce a reaction mixture, wherein the matrix solution assists oxidation/hydrolysis of the metal with HCl production. In a preferred embodiment the matrix solution includes zinc chloride in various stages of hydration and an oxygen containing gas is added to the mix. A method where the improvement is the mixing of a liquor and a matrix solution where the solution assists hydrolysis of the metal with HCl production is also disclosed. The reactor is a column reactor in a preferred embodiment. Further disclosed is the method of using the matrix solution and a reactor for recovering hydrochloric acid and for oxidizing/hydrolysis of a metal.
摘要:
A high purity cobalt chloride having a purity of 5N (99.999%) or higher and a manufacturing method of the high purity cobalt chloride via electrolysis are provided. In the method, cobalt having a purity of 5N or higher is used as an anode, a diluted hydrochloric acid bath having a pH of 1.5 to 3.0 is used as an electrolytic solution, the cobalt anode and a cathode plate are partitioned with an anion exchange membrane, and electrodeposition of the cobalt onto the cathode plate is thereby inhibited. The manufacturing method is capable of providing high purity cobalt chloride at a higher purity and at a lower production cost than conventional methods. Under circumstances where demands for cobalt chloride may increase, cobalt chloride needs to be manufactured at high volume and at low cost, and the method disclosed herein provides a technique capable of satisfying the foregoing requirements.
摘要:
A method for synthesis of lactic acid and its derivatives is provided. First, a mixture is prepared, which includes: at least one carbohydrate-containing raw material, at least one alcohol, at least one composite catalyst containing metal chloride(s) (MCln) and tin-containing compound(s), and at least one solvent, wherein M is selected from a group consisting of Li+, Na+ K+, Mg2+, Ca2+, Sr2+, Ga3+, In3+, Sb3+, Bi3+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, and n represents 1, 2 or 3. Then, the mixture is heated to obtain lactic acid and its derivatives. By using the above catalyst and method, it is capable of converting carbohydrate-containing raw material to lactic acid and its derivatives directly in a more efficient and economical way.
摘要:
Lithium metal oxides may be regenerated under ambient conditions from materials recovered from partially or fully depleted lithium-ion batteries. Recovered lithium and metal materials may be reduced to nanoparticles and recombined to produce regenerated lithium metal oxides. The regenerated lithium metal oxides may be used to produce rechargeable lithium ion batteries.
摘要:
Provided is high purity cobalt chloride having a purity of 5N (99.999%) or higher, and a manufacturing method of the high purity cobalt chloride via electrolysis, wherein cobalt having a purity of 5N or higher is used as an anode, a diluted hydrochloric acid bath having a pH of 1.5 to 3.0 is used as an electrolytic solution, the cobalt anode and a cathode plate are partitioned with an anion exchange membrane, and electrodeposition of the cobalt onto the cathode plate is thereby inhibited. An object of this invention is to provide a manufacturing method capable of providing high purity cobalt chloride at a higher purity and at a lower production cost than conventional methods. Under circumstances where demands for cobalt chloride may increase, cobalt chloride needs to be manufactured at high volume and at low cost, and the present invention offers a technique capable of satisfying the foregoing requirements.
摘要:
A method for synthesis of lactic acid and its derivatives is provided. First, a mixture is prepared, which includes: at least one carbohydrate-containing raw material, at least one alcohol, at least one composite catalyst containing metal chloride(s) (MCln) and tin-containing compound(s), and at least one solvent, wherein M is selected from a group consisting of Li+, Na+ K+, Mg2+, Ca2+, Sr2+, Ga3+, In3+, Sb3+, Bi3+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, and n represents 1, 2 or 3. Then, the mixture is heated to obtain lactic acid and its derivatives. By using the above catalyst and method, it is capable of converting carbohydrate-containing raw material to lactic acid and its derivatives directly in a more efficient and economical way.
摘要:
A process for chlorinating ore, slag, mill scale, scrap, dust and other resources containing recoverable metals from the groups 4-6, 8-12, and 14 in the periodic table. The process comprises: a) forming a liquid fused salt melt consisting essentially of aluminum chloride and at least one other metal chloride selected from the group consisting of alkali metal chlorides and alkaline earth metal chlorides, wherein the aluminum chloride content in the liquid salt melt exceeds 10% by weight; b) introducing the recoverable metal resources into said liquid salt melt: c) reacting the aluminum chloride as chlorine donor with said recoverable metal resource to form metal chlorides, which are dissolved in the salt melt; and d) recovering the formed metal chlorides from the salt melt.
摘要:
This invention is concerned with a process for dissolving oxidic trivalent cobalt compounds in hydrochloric acid while avoiding the generation of chlorine. It includes the following steps (a) slurrying in water the trivalent cobalt compound to be dissolved and (b) treating the resulting slurry with a reduction agent from the group consisting of methanol, formaldehyde and formic acid and with hydrochloric acid. The contact of the hydrochloric acid with the slurry should occur in the presence of the reducing agent. The rate of acid addition should be controlled to maintain the slurry at a pH above 1.
摘要:
The present invention provides an aqueous cobalt chloride solution purification method, in which impurities can be efficiently removed from a cobalt salt solution.Provided is a method for bringing metallic nickel into contact with an aqueous solution containing cobalt chloride to remove an impurity by a substitution reaction, in which the pH of the aqueous solution containing cobalt chloride is adjusted to not less than 1.5 and not more than 2.5. Since the pH of the aqueous solution containing cobalt chloride is adjusted to not less than 1.5 and not more than 2.5, a passive film on a surface of the metallic nickel can be effectively removed. When the passive film is removed, the metallic nickel comes in contact with the aqueous solution containing cobalt chloride, so that an impurity more noble than the metallic nickel can be precipitated by the substitution reaction. In addition, since the metallic nickel is only brought into contact with the aqueous solution containing cobalt chloride, the impurity can be easily removed from the aqueous solution containing cobalt chloride.