Abstract:
An internal combustion engine valvetrain for an internal combustion engine. The internal combustion engine Includes one or more cylinders with one or more intake valves, one or more blowdown exhaust valves, and one or more scavenge exhaust valves. In one example, the internal combustion engine valvetrain includes a first valve actuation mechanism to open and close the blowdown exhaust valves, and Includes a second valve actuation mechanism to open and close the scavenge exhaust valves.
Abstract:
A fuel supply device includes: an injector that injects and supplies fuel to an engine; a pressure accumulator communicating with a cylinder of the engine through a communication passage; a valve that opens or closes the communication passage; and a controller that controls the injector and the valve. When the engine is rotated, an air-fuel mixture is compressed in the cylinder, and an accumulating portion of the controller accumulates the air-fuel mixture in the pressure accumulator. When the engine is restarted, a supplying portion of the controller supplies the air-fuel mixture accumulated in the pressure accumulator to the cylinder.
Abstract:
An internal combustion engine is provided with a roughly concave cylinder head, wherein a ridge descends into the combustion chamber. A first wall is formed from the ridge to a cylinder periphery to form a seat for an air intake valve. A second wall is formed from the ridge to the opposite cylinder periphery to form a seat for one or more exhaust valves. The valves must criss-cross to open/close. The result is a more efficient flow of intake air and exhaust air to and from the combustion chamber which creates more horsepower. A plug compatible cylinder head can be installed on an engine to get added horsepower without a supercharger.
Abstract:
An internal combustion engine having a plurality of cylinders, comprising a movably mounted distribution element, wherein the distribution element in a first configuration fluidly couples an intake portion of a first cylinder of the plurality of cylinders with a combustion chamber of the first cylinder, and wherein the distribution element in a second configuration fluidly couples the combustion chamber of the first cylinder with an exhaust portion of the first cylinder.
Abstract:
An internal combustion engine is provided with a roughly concave cylinder head, wherein a ridge descends into the combustion chamber. A first wall is formed from the ridge to a cylinder periphery to form a seat for an air intake valve. A second wall is formed from the ridge to the opposite cylinder periphery to form a seat for one or more exhaust valves. The valves must criss-cross to open/close. The result is a more efficient flow of intake air and exhaust air to and from the combustion chamber which creates more horsepower. A plug compatible cylinder head can be installed on an engine to get added horsepower without a supercharger.
Abstract:
An electro-hydraulic lost motion system for variable valve activation including a master piston and an accumulation piston in a first bore, defining a hydraulic pressure chamber therebetween, in response to rotation of an engine cam. A slave piston in the engine head and hydraulically connected to the pressure chamber opens and closes an engine valve. A servo-valve behind the accumulation piston controls the mobility of the accumulation piston via a fluid control chamber. When the control chamber is made hydraulically rigid, the system actuates the engine valve. When the control chamber is vented through the servo-valve, the accumulation piston is movable in lost motion, preventing the engine valve from opening. All intermediate degrees of valve opening are possible. Preferably, the servo-valve, control chamber, accumulation piston, and a control piston are comprehended in a modular subassembly which may be positioned adjacent the master piston or the slave piston.
Abstract:
A valve structure is disclosed which is mechanically simple and is suited for use in an overhead-valve engine having a hemi-spherical combustion chamber. In the valve structure, inlet valve 3 and exhaust valve 2 are positioned in such a manner that they incline substantially like a "V" in front view to form an acute angle therebetween. Positioned on a first inclined plane U1 are the longitudinal center lines 2a, 4a and 1a of the inlet valve 2, the associated push rod 4 and the associated rocker arm 1, which connects these, respectively. Positioned on a second inclined plane U2 are the longitudinal center lines 3a, 4a and 1a of the exhaust valve 3, the associated push rod 4 and the associated rocker arm 1, which connects these, respectively.
Abstract:
In order to improve the suction efficiency and the cycle efficiency, a heat-insulating engine structure of the invention has a planar and thin-walled piston head surface portion of a ceramics material to be exposed to combustion gases. A combustion chamber is formed not on the side of the piston head but on the side of a cylinder head. Namely, the piston head is defined by the cooperation of a cylinder head bottom wall portion having a lowered central portion and a raised outer peripheral portion and a cylinder liner upper portion including an upper tubular part of a substantially square cross-section and a lower cylindrical part. The cylinder head bottom wall portion has an inclined surface radially upwardly extending from the central portion to the outer peripheral portion. Intake and exhaust valves are associated with valve seats formed in the inclined surface. A fuel injection nozzle is disposed substantially centrally of the cylinder head bottom wall portion. The sides of the square tubular part are operative to agitate a swirl to facilitate uniform mixture of fuel and air thereby assuring that the fuel and air are mixed instantaneously in a zone adjacent to the top dead center of the piston.
Abstract:
A cylinder head of an internal combustion engine carries an overhead camshaft and valves which diverge in a direction from the camshaft towards a combustion chamber with which the valves are associated. Longitudinal center lines of the valve stems intersect the camshaft axis.
Abstract:
An inlet-valve arrangement is for an external-heat engine, which includes at least one working chamber, each one having a cooperating piston. The working chamber is supplied with a working fluid via at least one controlled poppet valve. The poppet valve is arranged to open in the opposite direction to the flow direction of the working fluid. The center axis of the poppet valve is arranged perpendicularly within a deviation of ±45 degrees relative to the center axis of the piston.