摘要:
A carburetor has a carburetor body having a venturi passage that conveys air from an air inlet to an air outlet. A throttle valve controls flow of the air in the venturi passage. The throttle valve is movable into a closed position, an open position, and at least one transition position between the closed position and the open position. A fuel bowl holds fuel for mixing with the air in the venturi passage. A main nozzle discharges the fuel from the fuel bowl to the air in the venturi passage when the throttle is in the open position. A secondary circuit that is smaller than the main nozzle discharges fuel from the fuel bowl to the air in the venturi passage when the throttle is in the closed position, the transition position, and the open position. A filter is configured to remove particulate matter from the fuel in the fuel howl prior to discharge via the secondary circuit. Methods are for making the carburetor and operating the carburetor.
摘要:
A variable venturi-type carburetor has a base defining a central channel having an upper inlet end and a lower outlet end. A variable venturi assembly is situated in the middle of the central channel. The variable venturi assembly has a support, a conical body, and a resilient member. The support is fixed in the base, the bottom of the conical body is movably connected to the support, the surface of the conical body and the base define a venturi throat and the resilient member is situated between the support and the conical body. A fuel reservoir is provided in the base. A path structure connects the fuel reservoir and the venturi throat. A cam control mechanism is also part of the venturi assembly.
摘要:
A closed-loop fluidic control servo system for a vehicle having an internal combustion engine provided with a variable Venturi carburetor having an axially-shiftable spool operated by a vacuum motor. The system acts automatically through the motor to maintain the ratio of fuel-to-air supplied by the Venturi carburetor to the intake manifold of the system at the optimum value during all prevailing conditions of engine speed and load encountered in vehicular operation. The system includes a vacuum amplifier coupled to the intake manifold and responsive to a differential vacuum signal developed between the pressures existing at the inlet and throat of the Venturi to produce a proportionally amplified vacuum which is derived from the intake manifold vacuum and is a function of the vacuum signal. The proportionally amplified vacuum serves to energize the vacuum motor to shift the axial position thereof in a direction and to an extent bringing about the desired fuel-to-air ratio.
摘要:
A carburetor for an internal combustion engine includes idle passages (22A and 22B) extending through the carburetor body adjacent each cylinder bore (18a-18-D) of the carburetor, such that the idle passages bypass the cylinder bores. A common fuel flow metering circuit (30) is in fluid communication with at least two of the idle passages for joining the fuel flowing from the idle passages and redistributing the fuel back to the idle passages. A metering valve (40) is positioned in the common fuel flow circuit for metering the flow of fuel through the common fuel flow metering circuit, so that equal distribution of the fuel is delivered to the cylinders of the engine in spite of possible unequal flow of fuel being received through the idle passages.
摘要:
A fluid-mechanical variable Venturi metering system having a contoured moveable element in an intake casing to an internal combustion engine whose shape and Venturi air passage(s) results in automatic shifting of the moveable element by aerodynamic force as a function of the mass-volume of the air passing through which with levers produces amplified outputs of displacement, countervailing force and differential air velocity pressure (Venturi vacuum) proportional thereto and compensating for temperature, moisture content and pressure whereby an output or combination of outputs or transducing of outputs applied to fuel control devices and systems provides air-fuel mixtures in optimum ratio for the entire speed-load range of the modern engine for naturally aspirated and supercharged Fuel Injection and Carbureted Injection systems.
摘要:
A flow regulating carburetor having a movable control element operating within the throat of a venturi air passage, the element being automatically displaced to vary the effective size of the throat as a function of the mass-volume of the air stream flowing through the passage. This produces a velocity-pressure differential acting automatically to regulate the quantity of fuel induced through a fuel tube communicating with the throat and intermingling with the air stream to provide a ratio of air-to-fuel representing the optimum value for the prevailing condition of engine speed and load throughout the entire engine operating range, thereby effecting a marked improvement in fuel economy and reducing the emission of pollutants.
摘要:
An automatic control system for supplying a fuel-air mixture to an internal combustion engine through a Venturi structure conducting throttle-controlled incoming air to the intake manifold of the engine. Coaxially disposed in the casing of the structure is a cylindrical booster whose internal surface has a Venturi configuration to define a primary passage. Interposed between the booster and a ring having an external Venturi configuration mounted on the casing in an axially shiftable spool whose internal surface has a Venturi configuration to define a secondary passage having a variable throat between this surface and the spool. A tertiary passage is defined between the outer surface of the spool and the ring, incoming air passing through all three passages. An air-fuel dispersion is fed into the primary passage to intermingle with air flowing therethrough to create an atomized mixture which is fed through the variable throat of the secondary passage to further atomize the mixture which is then fed into the manifold. The air pressure difference between the inlet to the Venturi and the effective throat of the combined passages is sensed to produce a command signal for governing a servo motor in a closed loop arrangement to adjust the axial position of the spool to attain an optimum fuel-air ratio.
摘要:
An automatic control system for supplying a fuel-air mixture to an internal combustion engine including a variable-Venturi carburetor. Air is fed into the input of the Venturi, the air passing through the throat thereof whose effective area is adjusted by a mechanism operated by a servo motor. Fuel is fed into the input of the Venturi from a fuel reservoir through a main path having a fixed orifice and an auxiliary path formed by a metering valve operated by an auxiliary fuel-control motor. The differential air pressure developed between the inlet of the Venturi and the throat thereof is sensed to produce an air-velocity command signal that is applied to a controller adapted to compare the command signal with the servo motor set point to produce an output for governing the servo motor to cause it to seek a null point, thereby defining a closed process control loop. The intake manifold vacuum, which varies in degree as a function of load and speed conditions is sensed to govern the auxiliary fuel-control motor accordingly, is at the same time converted into an auxiliary signal which is applied to the controller in the closed loop to modulate the command signal in a manner establishing an optimum air-fuel ratio under the varying conditions of load and speed.
摘要:
A carburetor for an internal combustion engine includes idle passages (22A and 22B) extending through the carburetor body adjacent each cylinder bore (18A–18-D) of the carburetor, such that the idle passages bypass the cylinder bores. A common fuel flow metering circuit (30) is in fluid communication with at least two of the idle passages for joining the fuel flowing from the idle passages and redistributing the fuel back to the idle passages. A metering valve (40) is positioned in the common fuel flow circuit for metering the flow of fuel through the common fuel flow metering circuit, so that equal distribution of the fuel is delivered to the cylinders of the engine in spite of possible unequal flow of fuel being received through the idle passages.