Method and device for measuring the temperature of an exhaust gas flow in an exhaust line of an internal combustion engine
    3.
    发明申请
    Method and device for measuring the temperature of an exhaust gas flow in an exhaust line of an internal combustion engine 审中-公开
    用于测量内燃机排气管线中的废气流的温度的方法和装置

    公开(公告)号:US20090129436A1

    公开(公告)日:2009-05-21

    申请号:US11921893

    申请日:2006-05-04

    Abstract: A device for measuring a temperature of an exhaust gas flow in an exhaust branch of an exhaust gas section of an internal combustion engine is disclosed. A sub-region of the exhaust branch is configured as a parabolic mirror having a focal point positioned outside of the exhaust branch. The device includes a side channel member attached to the exhaust branch and having an open end adjacent to the exhaust branch and a closed end; and a radiation sensitive sensor disposed in the side channel member and at the focal point. The open end is in fluid communication with an interior of the exhaust branch through a cutout of the exhaust branch so that the sensor is coupled to radiation of the exhaust gas flow for measuring a temperature of the exhaust gas flow. A related method is also disclosed.

    Abstract translation: 公开了一种用于测量内燃机的排气部分的排气分支中的废气流的温度的装置。 排气分支的子区域被构造为具有位于排气分支外侧的焦点的抛物面镜。 该装置包括附接到排气支路并且具有与排气支路相邻的开口端和封闭端的侧通道构件; 以及设置在侧通道构件和焦点处的辐射敏感传感器。 开口端通过排气分支的切口与排气分支的内部流体连通,使得传感器与废气流的辐射耦合,以测量废气流的温度。 还公开了相关方法。

    Fiber optic network for multi-point emissivity-compensated semiconductor
wafer pyrometry
    5.
    发明授权
    Fiber optic network for multi-point emissivity-compensated semiconductor wafer pyrometry 失效
    用于多点发射率补偿半导体晶片高温测量的光纤网络

    公开(公告)号:US5317656A

    公开(公告)日:1994-05-31

    申请号:US17359

    申请日:1993-02-11

    Abstract: A fiber-optic network for communicating non-invasive, real-time, in-situ semiconductor wafer radiance and emissivity measurements. The fiber-optic network includes a plurality of optical fibers, a plurality of fiber-optic bundles, and a chopper multiplexer. The fiber-optic bundle provides for the simultaneous transmission and receipt of coherent infrared light energy and radiant heat energy from a semiconductor wafer within a fabrication reactor. The fiber-optic bundles are designed to be sufficiently small to fit within hollow light pipe in a lamp module that directs optical heating energy to the wafer. This substantially eliminates measurement error that the lamp module generates in known measurement devices. Use of optical fibers for transmitting and receiving laser energy and wafer radiance permits precision placement of the fiber-optic bundles to measure multiple temperatures on the semiconductor wafer surface.

    Abstract translation: 用于通信非侵入式,实时,原位半导体晶片辐射和发射率测量的光纤网络。 光纤网络包括多个光纤,多个光纤束和斩波多路复用器。 光纤束提供在制造反应器内同时传输和接收来自半导体晶片的相干红外光能量和辐射热能。 光纤束被设计为足够小以适合于将光学加热能量引导到晶片的灯模块中的中空光管中。 这实质上消除了灯模块在已知测量装置中产生的测量误差。 使用光纤传输和接收激光能量和晶片辐射允许光纤束的精确放置以测量半导体晶片表面上的多个温度。

    TEMPERATURE DETECTION DEVICE FOR A VEHICLE HEATER
    7.
    发明申请
    TEMPERATURE DETECTION DEVICE FOR A VEHICLE HEATER 有权
    用于车辆加热器的温度检测装置

    公开(公告)号:US20160069749A1

    公开(公告)日:2016-03-10

    申请号:US14848813

    申请日:2015-09-09

    Abstract: A temperature detection device (10) for a vehicle heater detects a fluid temperature. The device includes a temperature sensor (12) as well as a contact element (14) with a first side (16), around which the fluid can flow in at least some sections, and with a second side (18) facing away from the first side (16). The temperature sensor (12) is configured as a radiation sensor. The contact element (14) is arranged relative to the temperature sensor (12) such that at least a part of the radiation emitted from the second side (18) of the contact element (14) can be received by the temperature sensor (12).

    Abstract translation: 用于车辆加热器的温度检测装置(10)检测流体温度。 该装置包括温度传感器(12)以及具有第一侧(16)的接触元件(14),流体可以在该第一侧(16)周围至少部分地流动,并且第二侧(18)面向远离 第一面(16)。 温度传感器(12)被配置为辐射传感器。 接触元件(14)相对于温度传感器(12)布置成使得从接触元件(14)的第二侧(18)发射的辐射的至少一部分能够被温度传感器(12)接收, 。

    Sub-wavelength low-noise infrared detectors
    8.
    发明授权
    Sub-wavelength low-noise infrared detectors 失效
    亚波长低噪声红外探测器

    公开(公告)号:US07531805B1

    公开(公告)日:2009-05-12

    申请号:US11801249

    申请日:2007-05-08

    Abstract: In one of various embodiments, a detector assembly is provided which includes a metallic layer having a repeating pattern of structures over a dielectric substrate. The metallic layer in conjunction with the dielectric substrate form a structure capable of focusing incident radiation to sub-wavelength high field regions. A plurality of detectors are disposed within the dielectric substrate in the high field regions created by the metallic layer. In some embodiments, an array of subwavelength sized detectors may be located in the high field regions.

    Abstract translation: 在各种实施例中的一个中,提供了一种检测器组件,其包括在电介质基底上具有重复结构图案的金属层。 金属层与电介质基底结合形成能够将入射辐射聚焦到亚波长高场区域的结构。 多个检测器设置在由金属层产生的高场区域内的电介质基片内。 在一些实施例中,亚波长尺寸的检测器阵列可以位于高场区域中。

    Multi-point pyrometry with real-time surface emissivity compensation
    9.
    发明授权
    Multi-point pyrometry with real-time surface emissivity compensation 失效
    多点高温测量与实时表面发射率补偿

    公开(公告)号:US5255286A

    公开(公告)日:1993-10-19

    申请号:US911609

    申请日:1992-07-10

    Abstract: A multi-point non-invasive, real-time pyrometry-based temperature sensor (200) for simultaneously sensing semiconductor wafer (22) temperature and compensating for wafer emissivity effects. The pyrometer (200) measures the radiant energy that a heated semiconductor wafer (22) emits and coherent beams of light (224) that the semiconductor wafer (22) reflects. As a result, the sensor (200) generates accurate, high-resolution multi-point measurements of semiconductor wafer (22) temperature during a device fabrication process. The pyrometer (200) includes an infrared laser source (202) that directs coherent light beam (203) into beam splitter (204). From the beam splitter (204), the coherent light beam (203) is split into numerous incident coherent beams (210). Beams (210) travel via optical fiber bundles (218) to the surface of semiconductor wafer (22) within the fabrication reactor (80). Each optical fiber bundle (218) collects reflected coherent light beam and radiant energy from wafer (22). Reflected coherent light beam (226) and radiant energy (222) is directed to a detector (240) for detecting signals and recording radiance, emissivity, and temperature values. Multiple optical fiber bundles (218) may be used in the sensor (200) for high spatial resolution multi-point measurements of wafer (22) temperature for precision real-time process control and uniformity optimizations.

    Abstract translation: 一种用于同时感测半导体晶片(22)温度并补偿晶片辐射效应的多点非侵入式实时基于高温测量的温度传感器(200)。 高温计(200)测量加热的半导体晶片(22)发射的辐射能量和半导体晶片(22)反射的相干的光束(224)。 结果,传感器(200)在器件制造过程中产生半导体晶片(22)温度的准确的高分辨率多点测量。 高温计(200)包括将相干光束(203)引导到分束器(204)中的红外激光源(202)。 从分束器(204),相干光束(203)被分成许多入射相干光束(210)。 光束(210)通过光纤束(218)行进到制造反应器(80)内的半导体晶片(22)的表面。 每个光纤束(218)从晶片(22)收集反射的相干光束和辐射能。 反射相干光束(226)和辐射能(222)被引导到用于检测信号和记录辐射度,发射率和温度值的检测器(240)。 可以在传感器(200)中使用多个光纤束(218),用于晶片(22)温度的高空间分辨率多点测量,用于精确实时过程控制和均匀性优化。

    Multi-point pyrometry with real-time surface emissivity compensation
    10.
    发明授权
    Multi-point pyrometry with real-time surface emissivity compensation 失效
    多点高温测量与实时表面发射率补偿

    公开(公告)号:US5156461A

    公开(公告)日:1992-10-20

    申请号:US702646

    申请日:1991-05-17

    Abstract: A multi-point non-invasive, real-time pyrometry-based temperature sensor (200) for simultaneously sensing semiconductor wafer (22) temperature and compensating for wafer emissivity effects. The pyrometer (200) measures the radiant energy that a heated semiconductor wafer (22) emits and coherent beams of light (224) that the semiconductor wafer (22) reflects. As a result, the sensor (200) generates accurate, high-resolution multi-point measurements of semiconductor wafer (22) temperature during a device fabrication process. The pyrometer (200) includes an infrared laser source (202) that directs coherent light beam (203) into beam splitter (204). From the beam splitter (204), the coherent light beam (203) is split into numerous incident coherent beams (210). Beams (210) travel via optical fiber bundles (218) to the surface of semiconductor wafer (22) within the fabrication reactor (80). Each optical fiber bundle (218) collects reflected coherent light beam and radiant energy from wafer (22). Reflected coherent light beam (226) and radiant energy (222) is directed to a detector (240) for detecting signals and recording radiance, emissivity, and temperature values. Multiple optical fiber bundles (218) may be used in the sensor (200) for high spatial resolution multi-point measurements of wafer (22) temperature for precision real-time process control and uniformity optimizations.

    Abstract translation: 一种用于同时感测半导体晶片(22)温度并补偿晶片辐射效应的多点非侵入式实时基于高温测量的温度传感器(200)。 高温计(200)测量加热的半导体晶片(22)发射的辐射能量和半导体晶片(22)反射的相干的光束(224)。 结果,传感器(200)在器件制造过程中产生半导体晶片(22)温度的准确的高分辨率多点测量。 高温计(200)包括将相干光束(203)引导到分束器(204)中的红外激光源(202)。 从分束器(204),相干光束(203)被分成许多入射相干光束(210)。 光束(210)通过光纤束(218)行进到制造反应器(80)内的半导体晶片(22)的表面。 每个光纤束(218)从晶片(22)收集反射的相干光束和辐射能。 反射相干光束(226)和辐射能(222)被引导到用于检测信号和记录辐射度,发射率和温度值的检测器(240)。 可以在传感器(200)中使用多个光纤束(218),用于晶片(22)温度的高空间分辨率多点测量,用于精确实时过程控制和均匀性优化。

Patent Agency Ranking