Abstract:
A system, device, and method quantitatively measure average concentrations of target constituents (e.g., volatile organic compounds (VOCs)) in an ambient fluid (e.g., groundwater, surface water, air, etc.) over an extended period of time. The system uses a passive device having an outer equilibration chamber and an inner kinetic sampler. The device is placed in an ambient fluid for a specified period of time, wherein the target constituent(s) rapidly diffuse through a high-permeability membrane into the fluid-filled equilibration chamber. From there, the target constituents are taken up by an uptake rate the kinetic sampler that is configured to be less than an equilibration rate of the equilibration chamber.
Abstract:
A fluid mixing device includes a mixing element and a pathway for collecting a sample of fluid with an inlet end at a point where the fluid is well mixed. In an example embodiment, the pathway is provided through a body of the mixing element.
Abstract:
An improved sediment trap is adapted for inline placement in a pipe. The sediment trap includes a housing body defining two chambers with an intermediate screen member disposed therebetween. The first chamber includes at least one sidewall coupled to a partial front wall wherein the partial front wall, which is disposed at an end opposite from the intermediate screen member. The second chamber includes at least one sidewall and a rear mesh screen. When placed in-line, the effluent stream deposits solids of a first size in the first chamber and deposits solids of a second size in the second chamber.
Abstract:
A multi-stage dilution device, comprising a first stage dilution apparatus (A), and a second stage dilution apparatus (B), each of the stage dilution device comprising:—(i) a housing (1) having a diluent inlet (7); (ii) a sample inlet (2) having a sample introducer within the housing (1) adapted to introduce the sample at an introducer point (4) within the housing (1); and, (iii) a mixing conduit (5) mounted at least partially within the housing (1), the mixing conduit (5) having an inlet section comprising a mouth (10), and a fluid outlet (8), and a throat section (9) capable of producing a pressure drop within the mixing conduit (5), the pressure drop being sufficient to draw sample through the sample inlet (2); the introducer point (4) of the sample inlet (2) being proximate the mixing conduit inlet; and wherein the fluid output (8) of the first stage dilution apparatus (A) is in communication with the sample inlet (2) of the second stage dilution apparatus (B). A method of diluting a sample is also disclosed.
Abstract:
An apparatus for inoculating a sample to or withdrawing a sample from a vessel or conduit includes a body with an internal sample cavity, a valve operating rod movable to open and close an orifice to the sample cavity and a coupler to attach the body to a port of the vessel or conduit. A portion of the sample cavity is formed by an endcap which includes the orifice. The sample cavity is thermally and/or electrically insulated from the vessel or conduit. This insulation can arise from an empty or filled space between an inner wall and outer wall of the valve. Otherwise, insulating material can be used in forming the valve. The valve can be mountable on the vessel or conduit such that a positive drain angle is maintained regardless of whether the ferrule to the vessel or conduit is inclined upwardly, downwardly or is horizontal.
Abstract:
This device is directed at filling multiple receptacles without losing integrity of the system. It is also directed at receiving a (sealed) container of receptacles (opened or stopper/closed), opening an access into the sealed container, retrieving receptacles, filling those receptacles, stoppering the receptacles after filling and ejecting the receptacles, either directly into the outside environment or into a closable sack or container, in the latter case while maintaining the integrity of the environment within the device and, if desirable, the sack or closed container.
Abstract:
Apparatus to receive fecal material directly into a container and maintain it isolated, particularly as to its odors, while automatically homogenizing and withdrawing samples as may be desired and disposing of the remainder. The apparatus, either in fixed or portable form, includes connections to a source of homogenization fluid, a source of cleansing water, and a drain. It also includes means to mix the fecal material vigorously with the homogenization fluid to achieve a substantially homogeneous mixture which can be disposed of with relative ease and which can be sampled into a vacutainer through a vacutainer needle attached liquid-tight to the chamber containing the mixture. For multiple sampling, an automatically operated vacutainer changer brings one vacutainer at a time into position to have a sample of the mixture injected into it. Following such sampling, the apparatus and needle are automatically washed.
Abstract:
A sampling device is provided for concentrating a liquid specimen sample, including a filtration assembly, which includes a tubular container and a plunger. The plunger includes a plunger head and a plunger rod that is shaped so as to define an internal plunger space having a plunger-space proximal opening through a proximal end of the plunger rod. The sampling device is configured such that a filter is removable from the tubular container via the plunger-space proximal opening while the plunger head is within the tubular container. Other embodiments are also described.
Abstract:
A system for acquiring a fluid sample from a flow pipe, comprising a sampling probe placed within the flow pipe, a curved separating pipe in fluid communication with the sampling probe, the separating pipe having formed therein an inwardly-opening lengthwise channel along the outside curve thereof, the separating pipe terminating in a sample area, and a lengthwise inwardly-opening sample passage in fluid communication between at least a portion of the sample area and a sample port, the sample passage being formed substantially opposite the channel, whereby inertial effects induced in the separating pipe cause relatively higher density inorganic and dead organic material to funnel into the channel and out a non-sample drain formed in the sample area substantially opposite the separating pipe while allowing live organisms to navigate the sample passage and out the sample port.
Abstract:
The present invention refers to the subsampler and to a subsampling method that allows for the execution of environmental monitoring without the use of large sample volumes, thus ensuring specimen wealth and expedited analyses.