摘要:
A current duplicator (10) is provided for receiving a calibration current and providing an output current to a load (10). Current duplicator (10) includes a transconductor (14) having a differentially coupled input with a parasitic capacitance for storing a differential voltage during a supply period. This parasitic capacitance also converts a difference current into the voltage during a feedback period. The difference current is equal to the difference between the output current and the calibration current. Transconductor (14) converts the voltage into the output current. The current duplicator also includes a first switch network for coupling the output current to the load (12) during the supply period. The output current remains within a predetermined amount from the calibration current during the supply period. A second switch network feeds back the difference current to the input during the feedback period at least until the output current becomes substantially equal to the calibration current.
摘要:
An op amp includes a pair of buffer amplifiers interposed between the current switch and the output transistors in an output stage based on the Monticelli architecture. The buffer amps buffer the output transistors' gate capacitances, thereby allowing the output transistors to be nearly any desired size without adversely affecting the op amp's dynamic performance. This enables the op amp's compensation capacitors to set the amplifier's bandwidth, and allows the secondary pole to be at a higher frequency. The buffer amplifiers can also provide gain which effectively multiplies the transconductance of the output transistors and further extends out the secondary pole location. In addition, the buffer amplifiers can be used to provide voltage level translation between the current switch and output transistors, which can provide additional headroom for the op amp's gain stage.
摘要:
Effective control of the common-mode level of amplifiers is obtained through control structures (both closed-loop and open-loop structures) which are directed to various amplifier functions such as the reduction of amplifier loading, accurate sensing of common-mode levels, mitigation of headroom restraints, and proper transistor biasing. This common-mode control is especially useful in multiplying analog-to-digital converters (MDACs) of signal processing systems.
摘要:
Improved differential amplifiers are provided for use with switched-capacitor structures. Amplifier embodiments include a differential pair of high-transconductance transistors for generation of differential currents and routing of common-mode feedback signals along an independent path so that sufficient headroom is provided for other high-transconductance transistors that generate common-mode currents. The differential and common-mode currents preferably generate differential and common-mode output signals in finite output impedances of active loads.
摘要:
Improved differential amplifiers are provided for use with switched-capacitor structures. Amplifier embodiments include a differential pair of high-transconductance transistors for generation of differential currents and routing of common-mode feedback signals along an independent path so that sufficient headroom is provided for other high-transconductance transistors that generate common-mode currents. The differential and common-mode currents preferably generate differential and common-mode output signals in finite output impedances of active loads.
摘要:
Effective control of the common-mode level of amplifiers is obtained through control structures (both closed-loop and open-loop structures) which are directed to various amplifier functions such as the reduction of amplifier loading, accurate sensing of common-mode levels, mitigation of headroom restraints, and proper transistor biasing. This common-mode control is especially useful in multiplying analog-to-digital converters (MDACs) of signal processing systems.
摘要:
An improved VGA design offering a purely ratiometric mechanism for controlling gain by current-steering. A control loop delivers a reference voltage to a control amplifier that steers current and match the common mode output voltage (CMOV) with said predefined reference voltage. The VGA is designed so that, although the absolute gain varies over process, voltage, and temperature (PVT), the gain steps retain their values. Moreover, a method for controlling the gain in a VGA in a way that is insensitive to PVT is also disclosed. First, a voltage representing the required gain of the VGA in injected to the outputs of the VGA. Then, the CMOV of the VGA is sampled. Finally, the CMOV is subtracted by a predefined reference voltage and is fed back as bias to bases of the transistors of the VGA, thus controlling it gain, until the CMOV and the reference voltage become equal.
摘要:
An amplifier capable of being tuned to provide linear gain over a selected input signal range is disclosed herein. The amplifier includes an input stage for receiving an input signal. The amplifier further includes a tuning circuit, connected between the input stage and an amplifier output stage, for controlling gain of the amplifier by adjusting a tuning current supplied to the amplifier output stage. The tuning circuit may be realized with a differential transistor pair connected to a pair of transistors within the output stage. In a preferred implementation the input and output stages are arranged in a folded-cascode configuration so as to improve the output impedance and input common-mode signal range of the amplifier.
摘要:
An improved VGA design offering a purely ratiometric mechanism for controlling gain by current-steering. A control loop delivers a reference voltage to a control amplifier that steers current and match the common mode output voltage (CMOV) with said predefined reference voltage. The VGA is designed so that, although the absolute gain varies over process, voltage, and temperature (PVT), the gain steps retain their values. Moreover, a method for controlling the gain in a VGA in a way that is insensitive to PVT is also disclosed. First, a voltage representing the required gain of the VGA in injected to the outputs of the VGA. Then, the CMOV of the VGA is sampled. Finally, the CMOV is subtracted by a predefined reference voltage and is fed back as bias to bases of the transistors of the VGA, thus controlling it gain, until the CMOV and the reference voltage become equal.
摘要:
A self-biased electret microphone amplifier with phantom powering which avoids the need for JFETs and depletion mode devices, both of which are not standard devices when using BiCMOS fabrication processes. Feedback is included to provide enhanced gain, dynamic range, linearity and temperature stability, without requiring filtering, large resistances or external components. A self-biased, phantom powered, differential MOSFET amplifier receives and pre-amplifies the microphone signal. Further amplification and feedback is provided by a differential amplifier and bipolar output amplifier which operates as a common emitter amplifier for the amplified microphone output signal and as an emitter follower amplifier for the feedback signal.