Abstract:
Provided is a molding hook and loop fastener, in which a barrier erected near left and right side edges of a substrate includes at least two rows of vertical wall arrays, and the vertical wall array positioned on the outermost side includes a plurality of gaps provided at a predetermined pitch in a length direction. At least two of the gaps are provided on the vertical wall array positioned on the outermost side with respect to a region between the engaging elements adjacent in the length direction of the substrate. Due to this, in the molding hook and loop fastener, an outer side and an inner side of the barrier can be divided by the vertical wall array, and flexibility of the molding hook and loop fastener can be improved.
Abstract:
Provided is a manufacturing method for a fiber-reinforced resin sheet, the method being able to favorably impregnate a reinforcing-fiber base material with a thermoplastic resin. A fiber-reinforced resin sheet S is manufactured by introducing a reinforcing-fiber base material F in sheet form and a thermoplastic resin P into the gap between a pair of impregnating rolls 10A, 10B and impregnating the reinforcing-fiber base material F with the thermoplastic resin P while rotating the pair of impregnating rolls 10A, 10B. The surface of each of the pair of impregnating rolls 10A, 10B has formed thereon a resin holding layer 12 that elastically deforms along the thickness direction thereof when the impregnating rolls are pressed against each other and holds the molten thermoplastic resin P therein so as to be able to discharge the thermoplastic resin P upon pressing of the impregnating rolls against each other. Upon pressing of the impregnating rolls against each other, the reinforcing-fiber base material F is impregnated with the thermoplastic resin P while the resin holding layer 12 is elastically deformed.
Abstract:
An apparatus for manufacturing a rubber member includes an extruder; a mouthpiece; and a support surface which faces the mouthpiece in an opposed manner. The apparatus further includes: a rubber pool portion formed between the mouthpiece and the support surface; and a closing surface having an inclined surface shape and capable of closing a moving-direction front side of the rubber pool portion. A rubber material is ejected from an ejection port in a state where the rubber pool portion is closed by the closing surface, the support surface and the mouthpiece are moved relative to each other after the rubber pool portion is filled with the rubber material, and a lamination starting end of the rubber material is pressed to the closing surface thus molding the lamination starting end into an inclined surface and, thereafter, the closing surface is moved in a direction away from the support surface.
Abstract:
A method for applying a strip of elastomeric material to a surface is described. The method of forming a strip of elastomeric material includes the steps of: pumping an elastomeric material through a nozzle, positioning an opening of a nozzle in mating engagement with a rotatable roller, rotating the roller so that rotation of the roller pulls the elastomer material through the outlet of the nozzle, forming a strip.
Abstract:
A composite filler noodle is pulled through upper and lower roller dies respectively rotatable about first and second axes. The first and second axes are aligned to extend substantially parallel to each other within a plane that is substantially orthogonal to an axis of movement of the noodle.
Abstract:
A laminated touch fastener is made in a continuous process on a mold roll. Flowable resin is pressed against the mold roll in limited areas to form projections extending from resin layers that are laminated to a flexible substrate while carried on the mold roll. In one example a continuous channel about the mold roll is positioned such that the resin at least partially fills the channel as the layers are formed, thereby forming in the channel a raised portion in which the resin layer is of a greater thickness than at a point between the projections and the raised portion. In another example, grooves in the mold roll receive ribs of a pressure applicator during forming of the layers, the ribs blocking lateral flow of the resin to form a desired edge profile.
Abstract:
Various embodiments include a male surface fastener member configured for being molded onto a surface of a foaming resin mold body. The male surface fastener member includes a plurality of male surface fastener strips connected with each other in an end-to-end relationship via a connecting portion that is integrally formed with at least the end portions of each male surface fastener strips. Each male surface fastener strip includes a base material having a first surface from which a plurality of engaging elements extend upwardly and first and second substantially lateral resin intrusion prevention walls that upwardly from the first surface along a width direction of the base material between the first and second longitudinal resin intrusion prevention walls. Each of the lateral resin intrusion prevention walls comprises a plurality of engaging elements that are arranged in series in a width direction of the first surface.
Abstract:
A method of forming a touch fastener product having a sheet-form base and an array of discrete fastener elements each extending from the base includes providing a molded sheet-form base and an array of discrete fastener element preforms, each preform extending from the base and including both a stem portion rising from the base and a head portion both contiguous with a distal end of the stem portion and having an upper surface directed away from the base, the head portion including at least one laterally directed extension overhanging the base in a primary lateral direction between exposed sides of the fastener element preform and ending at a distal, free tip; and then forming respective caps, of a cap material of a higher flex modulus than the resin of the preforms, on the upper surfaces of at least some of the molded fastener element preforms to form the discrete fastener elements.
Abstract:
The invention relates to a method and to a device for producing endless strands, particularly plastic strands having structure in the longitudinal axis. According to the invention, form elements (14, 15) bounding a form cavity (4) are brought together and aligned with each other in rows for making a form cavity (4), the form cavity (4) is moved in the longitudinal axis of the rows and casting material is brought into the form cavity (4) at a gate location running against the direction of motion through a side opening (5) of the form cavity (4), and the form cavity is opened continuously at a distance from the gate location while moving the form elements apart, in order to demold an endless strand solidified in the form cavity (4).
Abstract:
An extrusion device for producing elastomeric compounds, includes a holding body internally confining a chamber and at least one extrusion screw disposed in the chamber. The device further includes a plurality of interchangeable extrusion heads alternatively installed on the holding body at a discharge opening of the chamber. The choice of using a type of head rather than another or leaving the discharge opening free is carried out based on the physico-chemical features of the elastomeric compound to be treated, so as to maintain the temperature and/or pressure of the outgoing compound under critical threshold values for such a compound.