Abstract:
Provided are a printing plate and a printing method that allow for high-resolution printing and efficient use of printing ink. The printing plate has an image area and a non-image area. The image area of the printing plate is a recessed area formed by a layer containing silicone rubber. The non-image area is a raised area formed by a layer containing a fluorine compound on a surface of the layer containing silicone rubber. The height difference between a surface of the image area and a surface of the non-image area of the printing plate is from more than 0.1 μm to 10 μm. The printing method includes an ink-applying step of applying a printing ink to an image area of a printing plate and a transfer step of transferring the printing ink from the image area to a substrate. A method for manufacturing a printing plate has the steps of forming a second layer containing silicone rubber in a region that becomes a non-image area on a first layer containing silicone rubber to obtain a layer containing silicone rubber; and forming the layer containing the fluorine compound on a surface of the second layer containing silicone rubber.
Abstract:
An improved laser markable material useful for encapsulation of electronic devices is obtained by adding TiO.sub.2 or TiO.sub.2 +CrO.sub.3 to common plastic encapsulants formed from a mixture of a resin+filler+carbon black+mold release agent. When irradiated by a laser, the originally grey material turns bright gold, providing a high contrast durable mark. The material has excellent marking contrast as well as better stability with time and temperature as compared to prior art laser markable encapsulants. Desirable concentrations, in weight percent of the compound, are 1-5% TiO.sub.2 and 0-3% CrO.sub.3, with 1-3% TiO.sub.2 and 0.5-2% CrO.sub.3 being preferred. Carbon black is optional but a concentration in the range 0.1-3% by weight is desirable with 0.5-1% preferred. Improved encapsulation and marking methods and improved devices using this material are described.
Abstract:
A marking material having a substrate layer defined by a first rubber compound. A mark is applied to the substrate layer, which mark is defined by a second rubber compound that visibly contrasts with the first rubber compound.
Abstract:
An improved laser markable material useful for encapsulation of electroic devices is obtained by adding TiO.sub.2 or TiO.sub.2 +CrO.sub.3 to common plastic encapsulants formed from a mixture of a resin+filler+carbon black+mold release agent. When irradiated by a laser, the originally grey material turns bright gold, providing a high contrast durable mark. The material has excellent marking contrast as well as better stability with time and temperature as compared to prior art laser markable encapsulants. Desirable concentrations, in weight percent of the compound, are 1-5% TiO.sub.2 and 0-3% CrO.sub.3, with 1-3%TiO.sub.2 and 0.5-2% CrO.sub.3 being preferred. Carbon black is optional but a concentration in the range 0.1-3% by weight is desirable with 0.5-1% preferred. Improved encapsulation and marking methods and improved devices using this material are described.
Abstract:
An information carrier such as a push-button switch consists of a silicone elastomer. The information carrier has an a label-carrying surface in which there is embedded a printing ink having a vulcanizing mechanism similar to that of the silicone elastomer. The ink and silicone elastomer are vulcanized to form the ink into a pattern on the label-carrying surface. The label-carrying surface having the pattern embedded therein constitutes a non-glossy surface of a predetermined roughness. Also disclosed are a method and apparatus for manufacturing the information carrier by printing the printing ink on a transfer plate, which has a roughness of several microns, followed by half vulcanization to embed a pattern which is manifested by the printing ink into the label-carrying surface of the information carrier.
Abstract:
Provided is a tire and a tire surface printing method which are capable of reducing man-hours and cost required for application of printing on the tire surface. The tire and the tire surface printing method include, on an outer surface of at least one of side portions (3) thereof, a printed region (5) formed by printing. The printed region (5) includes: a dark-colored portion (7) having a black color, which is a base color of the tire; and a bright-colored portion (9) that has a color different from the black color and that is located to surround the dark-colored portion (7). The dark-colored portion (7) is not applied with any paint, and the bright-colored portion (9) includes a white-colored layer (11) that includes a white color paint and that is located as the lowermost layer being in contact at least with the outer surface (3a) of the side portion (3).
Abstract:
The system (10) includes at least one elastomeric, vulcanizable ink (18) that defines a decorative decal image (20). The decal image (20) has perimeter edges (22) and a display area (24) extending between the perimeter edges (22). The vulcanizable ink is vulcanized upon a carrier sheet (12). A heat-activated adhesive layer (26) is applied to overlie the display area (24) of the decal image (20), and the heat-activated adhesive layer (26) is also partially activated upon the display area (24) of the decal image (20). The decorative decal image (20) having the partially activated adhesive layer (26) is then thermally transferable to a vulcanized rubber product (28) such as a side wall (30) of an automotive tire (32), after which the carrier sheet (12) is removed.
Abstract:
A heat activated transfer which is particularly suitable for marking elastomeric articles comprises a lower elastomeric layer bonded to an upper polyester layer. The upper polyester layer in turn carries indicia which is a sublimation dye heat transferred into the polyester layer. The polyester is preferably a high temperature saturated polyester resin, preferably polyethylene terephthalate. The lower layer is preferably a thermoplastic elastomeric layer. The two layers are bonded together by a thermoplastic adhesive, preferably a polyester.
Abstract:
A process of printing applies printing ink to the surface of a product of thermoplastic rubber compounds containing upwards of 95% mineral oil. The process uses ink compositions of resins, mineral oil, solvents, colorants, and additives. The process involves preparing a product from copolymer resins and other components, and blending an ink from copolymer resins and other components. Next, the process prints the desired multi-color image on the treated surface followed with a top coat on the surface of the substrate to protect the printed image. The top coat and ink stretch with the product so that the image remains intact. The process uses pad printing to print the image upon the surface of the product.