Abstract:
The subject invention provides a novel fluorescence-based, T5 exonuclease-amplified DNA cleavage assay for gyrase poisoning inhibitor discovery. According to the assay, multiple gyrase molecules can simultaneously bind to a plasmid DNA molecule to form multiple gyrase-DNA cleavage complexes on the same plasmid. These gyrase-DNA cleavage complexes, greatly stabilized by a gyrase poisoning inhibitor, and can be trapped by a detergent such as sarkosyl. Digestion of gyrase by proteinase K results in the production of small DNA fragments, which can be digested by T5 exonuclease. This fluorescence-based DNA cleavage HTS assay is also suitable for screening large compound libraries to identify inhibitors against DNA topoisomerases, including human DNA topoisomerase IIα.
Abstract:
The present invention provides assays and methods for studying DNA topology and topoisomerases. The assays and methods utilize a circular plasmid DNA comprising one or more hairpin structures and the ability of T5 exonuclease (T5E) to digest the circular plasmid DNA in a specific configuration. The assays and methods can be used as a high throughput screening for inhibitors of, for example, DNA gyrases and DNA topoisomerases I for anticancer drug and antibiotics discovery.
Abstract:
The present invention provides assays and methods for studying DNA topology and topoisomerases. The assays and methods utilize a circular plasmid DNA comprising one or more hairpin structures and the ability of T5 exonuclease (T5E) to digest the circular plasmid DNA in a specific configuration. The assays and methods can be used as a high throughput screening for inhibitors of, for example, DNA gyrases and DNA topoisomerases I for anticancer drug and antibiotics discovery.
Abstract:
The present disclosure provides methods and reagents useful for analyzing protein-protein interfaces such as interfaces between a presenter protein (e.g., a member of the FKBP family, a member of the cyclophilin family, or PIN1) and a target protein. In some embodiments, the target and/or presenter proteins are intracellular proteins. In some embodiments, the target and/or presenter proteins are mammalian proteins.
Abstract:
The present invention provides methods of negatively modulating the Werner protein (WRN) to inhibit proliferative cells characterized by high microsatellite instability (MSI-H), for example to treat proliferative diseases (such as cancer) characterized by high MSI (MSI-H). Further provided are compositions used in such methods.
Abstract:
Methods are provided for assessing a clinical response to a glucocorticoid receptor antagonist (GRA) in a human subject and for diagnosing Cushing's syndrome.
Abstract:
The present disclosure provides methods and reagents useful for analyzing protein-protein interfaces such as interfaces between a presenter protein (e.g., a member of the FKBP family, a member of the cyclophilin family, or PIN1) and a target protein. In some embodiments, the target and/or presenter proteins are intracellular proteins. In some embodiments, the target and/or presenter proteins are mammalian proteins.
Abstract:
The subject invention concerns materials and methods for treating depression, stress disorders, such as PTSD, anxiety disorders, and/or a neurodegenerative disease or condition in a person or animal. In one embodiment, a person or animal in need of treatment is administered one or more compounds or drugs, or a composition comprising the one or more compounds or drugs, that inhibit FKBP51 activity or function. The subject invention also concerns a method for inhibiting activity of the FKBP51 protein in a cell. The subject invention also concerns methods of screening for compounds or drugs that inhibit the FKBP51 protein.
Abstract:
The invention provides a method of identifying a microorganism that expresses a nucleic acid-modifying enzyme, in sample, the method comprising: (a) contacting a nucleic acid substrate targeted by the nucleic acid-modifying enzyme with the sample; (b) adding a further nucleic acid molecule to the sample which nucleic acid molecule is ligated to the nucleic acid substrate in the presence of the nucleic acid-modifying enzyme to form a ligation product which comprises a linear single strand of nucleic acid that is capable of being detected; and (c) detecting the presence of the ligation product.
Abstract:
The present invention provides a TOP2A inhibition by temozolomide useful for predicting glioblastoma patient's survival. Glioblastoma (GBM) is the most common, malignant primary adult brain tumor. The conventional treatments for GBM, include surgery, radiation, and chemotherapy which have only modestly improved patient survival. The patients with GBM expressing higher TOP2A transcript levels had better prognosis. More interestingly, the present invention reports that temozolomide is an inhibitor of TOP2A activity in vitro. The present invention further shows that siRNA knock down of TOP2A rendered a glioma cell line resistant to temozolomide chemotherapy. Thus it is demonstrated for the first time that temozolomide is a TOP2A inhibitor and establishes that TOP2A transcript levels determines the chemosensitivity of glioblastoma to temozolomide therapy thus explaining the very high levels of TOP2A transcript being a good prognostic indicator in GBM patients receiving temozolomide chemotherapy.