Abstract:
The invention provides light-emitting compositions, including lasing and fluorescent compositions. The invention particularly relates to programmable biological substrates, which fluoresce and/or lase, and which have a wide variety of different applications. The invention extends to use of the fluorescent compositions and lasing compositions comprising programmable biological substrates in fabricating lasers, and in various biological imaging applications, such as in assays.
Abstract:
A tube preparation step of preparing a resin tube that has a tube wall impregnable with a solution including a fine substance and is made of a light-transmitting resin material, a solution preparation step of preparing a solution that includes a fine fluorescent substance that emits fluorescence or a fine scattering substance that scatters light as an oscillation material and an impregnation step of causing the resin tube to be immersed in the solution and causing the tube wall of the resin tube to be impregnated with the oscillation material, are included.
Abstract:
A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
Abstract:
In one exemplary embodiment, an apparatus can be provided which includes at least one biological medium that causes gain. According to another exemplary embodiment, an arrangement can be provided which is configured to be provided in an anatomical structure. This exemplary arrangement can include at least one emitter having a cross-sectional area of at most 10 microns within the anatomical structure, and which is configured to generate at least one laser radiation. In a further exemplary embodiment, an apparatus can be provided which can include at least one medium which is configured to cause gain; and at least one optical biological resonator which is configured to provide an optical feedback to the medium. In still another exemplary embodiment, a process can be whereas, a solution of an optical medium can be applied to a substrate. Further, it is possible to generate a wave guide having a shape that is defined by (i) at least one property of the solution of the optical medium, or (ii) drying properties thereof.
Abstract:
A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.
Abstract:
A miniature tunable dye laser comprises a pair of mirrors opposed along an optical axis and shaped to provide an optical cavity with stable resonance in at least one mode and having a cavity length of at most 50 μm. A laser dye is inside the optical cavity. A laser pump illuminates the dye with pump EM radiation having a band of wavelengths that is wider than the mode of said cavity An actuator system moves move the mirrors relative to each other along the length of the optical cavity for tuning the wavelength of the mode of said cavity.
Abstract:
The invention provides light-emitting compositions, including lasing and fluorescent compositions. The invention particularly relates to programmable biological substrates, which fluoresce and/or lase, and which have a wide variety of different applications. The invention extends to use of the fluorescent compositions and lasing compositions comprising programmable biological substrates in fabricating lasers, and in various biological imaging applications, such as in assays.
Abstract:
A light source module including: an LD element outputting a laser light; a lens receiving the laser light and outputting a focused light; an optical filter having transmission wavelength characteristics, inputting the focused light, and outputting a transmitted light and a reflected light based on the transmission wavelength characteristics, a light-receiving element detecting the reflected light which passes thorough the lens and generating a detection signal; and a control unit configured to control an output wavelength of the LD element based on the detection signal.
Abstract:
A structure generates electromagnetic radiation having at least one wavelength selected for activating a photosensitive substance that is applied to a tissue to be treated. The structure is particularly useful for photodynamic therapy (PDT) applications. The structure includes a body of material, such as a polymer filament, band, or substrate, that contains a gain medium. The gain medium in turn contains a substance (such as dye molecules) for generating a stimulated emission that includes the at least one wavelength when excited by a pump wavelength, and a plurality of scattering sites (such as scattering particles) for scattering the stimulated emission to provide a narrow band emission at the at least one selected wavelength. The narrow band emission in turn activates the photo-sensitive therapeutic substance.
Abstract:
A method for forming microilluminants, which comprises the steps of irradiating laser beam to microparticles doped with a laser pigment in a liquid medium, trapping the microparticles and causing these microparticles to emit light.According to this method, it is possible to form microilluminants, permitting application to new physical and chemical processes and to processing and modification of microparticles, and new developments such as optical STM.