Abstract:
A method is provided to control the acceleration of a motor vehicle from a current speed, wherein the motor vehicle includes an accelerator pedal system able to generate on the accelerator pedal an added reaction force when the depression of the accelerator pedal reaches a given depression level. The method includes the steps of: a) measuring the current vehicle speed; b) determining a target speed of the motor vehicle in function at least of the current vehicle speed or determining from the current vehicle speed a maximum acceleration rate; c) determining at least one threshold depression level of the accelerator pedal that corresponds to the stabilization of the vehicle speed at the target speed or that corresponds to maximum acceleration rate; d) generating an added reaction force on the accelerator pedal if the depression of the accelerator pedal reaches or is about to reach the threshold depression level; wherein at least steps a), b), and c) are automatically repeated as vehicle speed increases.
Abstract:
A vehicle drive device that includes a rotary electric machine that serves as a drive force source for wheels; a speed change mechanism; a pump motor that serves as a drive force source for an electric pump that generates a hydraulic pressure to be supplied to a servo mechanism for the speed change mechanism; a case that accommodates the speed change mechanism; and a first inverter that controls the rotary electric machine and a second inverter that controls the pump motor, the first inverter and the second inverter being connected to a common DC power source, wherein: the first inverter and the second inverter are disposed in the case; and a first wiring member that extends from the DC power source is branched in the case to be connected to each of the first inverter and the second inverter.
Abstract:
A method of and system for controlling the speed of a motor vehicle based on a control characteristic so that the speed of the vehicle follows a target speed. The system estimates a dynamic characteristic of the motor vehicle to adjust the control characteristic when the motor vehicle is under a cruising control. The system includes a sensor for detecting a speed of the motor vehicle and a sensor for detecting an operating position of an actuator which adjusts a travelling speed of the motor vehicle. In the system, the detected vehicle speed and actuator operating position are converted into data in terms of an imaginary operating point. The imaginary operating point remains constant because it is not affected by variations of a static characteristic of the motor vehicle. The dynamic characteristic of the motor vehicle is estimated on the basis of the conversion data. This arrangement can accurately estimate the dynamic characteristic of the motor vehicle.
Abstract:
A constant-speed cruising control apparatus for vehicles, which comprises a reed switch for generating a vehicle speed signal, a set switch for setting the cruising speed, a memory circuit for storing and outputting a cruising speed signal, a first comparing circuit for comparing the cruising speed signal with the vehicle speed signal, an actuator for actuating a throttle valve according to a signal output from the first comparing circuit, a first computing circuit for calculating expectation value of vehicle speed change on basis of the signal output from the first comparing circuit, a second computing circuit for calculating change of the vehicle speed signal, a second comparing circuit for comparing signals output from the first and the second computing circuits, and a down-shift circuit for shifting an automatic transmission into lower gear on basis of a signal output from the second comparing circuit.
Abstract:
A control system for a motor vehicle has a continuously variable transmission, a transmission ratio control system for controlling the transmission ratio, and a cruise control system for controlling speed of the vehicle to a desired cruising speed. The transmission ratio is controlled to a desired transmission ratio in accordance with load on the engine. The desired transmission ratio is further determined in accordance with the desired cruising speed.
Abstract:
A cruise control system for a vehicle having an internal combustion engine provided with a throttle valve operated by a diaphragm actuator irrespective of a depression of an accelerator pedal by an operator of the vehicle. The system is provided with a system for controlling a vehicle speed in a so-called "dead zone" where hunting usually occurs if a normal feedback control is executed. A time-interval integrating unit is provided for integrating the deviation of the acutal speed with respect to the target speed with a time interval as well as a weight factor, so that the integrated value corresponds to the change in the deviation in the dead zone. The integrated value is compared with a predetermined value corresponding to a change in the vehicle speed which is obtainable when the least significant bit in the control signal output to the actuator is changed. When the integrated value becomes equal to or higher than the predetermined value, the least significant bit is incremented or decremented, and thus speed control in the "dead zone" becomes possible.
Abstract:
An automatic speed control mechanism for a motorcycle that embodies a separately driven vacuum pump for controlling the throttle valve of the motorcycle independently of its induction system vacuum. In addition, an indicator system is provided that indicates when the automatic speed control is operative and further which indicates the preset speed and the actual speed of travel. A manual arrangement is provided for manually overriding the automatic speed control so as to reduce vehicle speed without disabling the automatic speed control device.
Abstract:
A vacuum actuator for actuating the throttle valve of a vehicle is driven by a surge tank via three valves which are actuated by their respective solenoids. These solenoids are energized by their respective driver circuits. The input signal applied to each solenoid is compared with the output signal delivered from the solenoid by a comparator. The comparators for the solenoids are incorporated in a microcomputer. If any one of the comparators indicates disagreement between its two input signals, and if this disagreement persists for a given period, then the microcomputer deenergizes the corresponding solenoid. A timer for measuring the duration of the disagreement is also incorporated in the microcomputer. For example, the invention can be employed in a velocity-sustaining device for a vehicle.
Abstract:
A fixed speed cruising control apparatus for a vehicle comprises a cruising speed detecting means, a signal smoothening means, smoothening-characteristic adjusting means, and a driving force control means wherein the signal-smoothening-characteristic adjusting means generates to the signal smoothening means a signal on the basis of a smoothened cruising speed signal from the signal smoothening means so that noise components in the smoothened cruising speed signal are cancelled in the smoothening means.
Abstract:
A cruise control system for a vehicle having an automatic transmission comprises a vehicle speed sensor for detecting the actual vehicle speed, an engine output power control mechanism, and a vehicle speed controller which compares the actual vehicle speed detected by the vehicle speed sensor with a set speed and controls the engine output power control mechanism in accordance with the result of the comparison so that the vehicle speed is converged upon the set speed at a predetermined rate. The automatic transmission is caused to downshift when the actual vehicle speed is lowered from the set speed by a predetermined amount while the vehicle speed controller operates to fix the vehicle speed, and when the automatic transmission is shifted down, the predetermined rate of convergence is reduced so that the vehicle speed is converged upon the set speed at a reduced rate.