Phosphorous modified molecular sieves, their use in conversion of organics to olefins

    公开(公告)号:US10118872B2

    公开(公告)日:2018-11-06

    申请号:US15684709

    申请日:2017-08-23

    摘要: The present invention is a phosphorous modified zeolite (A) made by a process comprising in that order: selecting a zeolite with low Si/Al ratio (advantageously lower than 30) among H+ or NH4+-form of MFI, MEL, FER, MOR, clinoptilolite, said zeolite having been made preferably without direct addition of organic template; steaming at a temperature ranging from 400 to 870° C. for 0.01-200h; leaching with an aqueous acid solution containing the source of P at conditions effective to remove a substantial part of Al from the zeolite and to introduce at least 0.3 wt % of P; separation of the solid from the liquid; an optional washing step or an optional drying step or an optional drying step followed by a washing step; a calcination step. The present invention also relates to a process (hereunder referred as “XTO process”) for making an olefin product from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock wherein said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock is contacted with the above catalyst (in the XTO reactor) under conditions effective to convert at least a portion of the oxygen-containing, halogenide-containing or sulphur-containing organic feedstock to olefin products (the XTO reactor effluent).The present invention also relates to a process (hereunder referred as “combined XTO and OCP process”) to make light olefins from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock comprising: contacting said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock in the XTO reactor with the above catalyst at conditions effective to convert at least a portion of the feedstock to form an XTO reactor effluent comprising light olefins and a heavy hydrocarbon fraction; separating said light olefins from said heavy hydrocarbon fraction; contacting said heavy hydrocarbon fraction in the OCP reactor at conditions effective to convert at least a portion of said heavy hydrocarbon fraction to light olefins.