摘要:
The present invention provides nucleic acid-containing lipid nanoparticles containing a lipid (lipid A) which has a hydrophilic unit having a single quaternary ammonium group, and three independent, optionally substituted hydrocarbon groups, a lipid derivative or fatty acid derivative of a water-soluble polymer, and a nucleic acid.
摘要:
This document describes a process for the high purity and high concentration recovery of monovalent products via continuous ion exchange from aqueous solution for further down-stream purification.
摘要:
The hydrophilic oil repellent includes one or more types of nitrogen-containing fluorine-based compounds. The nitrogen-containing fluorine-based compound includes any one hydrophilicity imparting group selected from the group consisting of anion type hydrophilicity imparting groups, cation type hydrophilicity imparting groups, and amphoteric type hydrophilicity imparting groups in the molecule.
摘要:
This document describes a process for the high purity and high concentration recovery of monovalent products via continuous ion exchange from aqueous solution for further downstream purification.
摘要:
The invention provides a cationic lipid capable of achieving higher intracellular delivery efficiency than conventional cationic lipids, when used as a lipid membrane structure which is a carrier for delivering functional nucleic acid. The cationic lipid is represented by the formula (1): wherein each symbol is as defined herein.
摘要:
This invention relates to certain dendrimer compounds. In particular, this invention relates to novel dendrimer compounds that can be elaborated to give increasingly large and complex compounds. These elaborated compounds can be attached to, or can encapsulate within, active agent(s) so as to beneficially modify the characteristics of that active agent. Alternatively, the elaborated compounds can themselves be beneficially modified into therapeutic agents by the attachment of inactive agents.
摘要:
The invention features a cationic lipid of formula I, an improved lipid formulation comprising a cationic lipid of formula I and corresponding methods of use. Also disclosed are targeting lipids, and specific lipid formulations comprising such targeting lipids.
摘要:
The invention provides a method of crystallising a compound comprising either: (i) providing a first confined solution comprising the compound; and adding more of the compound to and/or increasing the degree of saturation of the first confined solution, whereby to provide a resultant second confined solution that comprises more compound and/or that has a greater degree of supersaturation relative to a confined supersaturated solution of the same compound stabilised solely by being confined; or (ii) providing a first confined melt comprising the compound; and cooling and/or increasing the pressure of the first confined melt, whereby to provide a resultant second confined melt that is cooler and/or is more pressurised relative to a confined super-cooled melt of the same compound stabilised solely by being confined, whereby to effect the crystallising under confinement and under thermodynamic control.
摘要:
It is an objective of the present invention to produce an anti-form of an optically active β-hydroxy-α-aminocarboxylic acid ester efficiently, simply and industrially advantageously. The objective can be accomplished by directly and selectively producing the anti-form of the optically active β-hydroxy-α-aminocarboxylic acid ester by asymmetric reduction of a β-keto-α-aminocarboxylic acid ester using an optically active amine complex as a catalyst. Further, the β-keto-α-aminocarboxylic acid ester as a raw material can be produced at a high yield by reacting a glycine derivative with a carboxylic acid derivative.
摘要:
The invention relates to a dynamic nuclear polarisation (DNP) method for producing hyperpolarised amino acids and amino sulphonic acids and compositions for use in the method. As a sample, an ammonium salt of an amino acid, an ammonium salt of an aminosulphonic acid, a carboxylate salt of an amino acid, a sulphonate salt of an aminosulphonic acid or mixtures thereof is used.