摘要:
Methods of processing magnesium silicate materials are described to produce a number of products including magnesium hydroxide. Related methods of use of processed magnesium silicate and other reaction products are described for energy production, cement manufacture and carbon sequestration. In one embodiment the method comprises subjecting a magnesium silicate source to an acid digestion; increasing the digested liquid pH to produce a magnesium salt solution; subjecting the magnesium salt solution to electrolysis; and recovering magnesium hydroxide produced from electrolysis. By-products such as silica, iron oxy(oxides) and others are also described along with further reaction products such as magnesium oxide and magnesium carbonate.
摘要:
The present disclosure discloses a preparation device for magnesium oxide fiber and preparation method thereof. The preparation device for the magnesium oxide fiber includes a fiber releasing device, an electrochemical reaction device, a heating device, and a fiber receiving device. The fiber releasing device is used for releasing magnesium metal fiber. The electrochemical reaction device is used for oxidizing the magnesium metal fiber released by the fiber releasing device into magnesium hydroxide fiber, comprising a solution storage part, a negative electrode, and a positive electrode. Neutral electrolyte is stored in the solution storage part to soak the magnesium metal fiber released by the fiber releasing device. The heating device is used for heating the magnesium hydroxide fiber prepared by the electrochemical reaction device, to obtain magnesium oxide fiber. The fiber receiving device is used for receiving the magnesium oxide fiber obtained after being heated.
摘要:
An apparatus and method are provided for the electrochemical production of hydrogen, oxygen and metal hydroxide wherein the metal is derived from a metal silicate. The process involves the electrolysis of a metal salt solution where hydrogen and a metal hydroxide are produced at the cathode, and oxygen, or chlorine, and an acid are produced at the anode. The acid is reacted with a metal silicate producing a soluble metal salt and water that is used in turn to make solid or dissolved metal hydroxide. The net CO2 and acid gas emissions of the invention and its products may therefore be significantly reduced or turned negative.
摘要:
The present invention relates to a method for manufacturing lithium hydroxide and lithium carbonate, and a device therefor. The present invention provides a method for manufacturing lithium hydroxide, comprising: a step of dissolving lithium phosphate in an acid; a step of preparing a monovalent ion selective-type electrodialysis device disposed in the order of a cathode cell containing a cathode separator, a monovalent anion selective-type dialysis membrane for selectively permeating a monovalent anion, a monovalent cation selective-type dialysis membrane for selectively permeating a monovalent cation, and an anode cell containing an anode separator, injecting the lithium phosphate dissolved in the acid between the anode separator of the anode cell and the monovalent cation selective-type dialysis membrane, and between the cathode separator of the cathode cell and the monovalent anion selective-type dialysis membrane, respectively, and injecting water between the monovalent cation selective-type dialysis membrane and the monovalent anion selective-type dialysis membrane; a step of obtaining an aqueous lithium chloride solution, and at the same time, obtaining a phosphoric acid aqueous solution formed as a byproduct, by applying an electric current to the monovalent ion selective-type electrodialysis device; and a step of converting the obtained aqueous lithium chloride solution into an aqueous lithium hydroxide solution.
摘要:
This invention relates to a system and a method for achieving efficient production of hydrogen in a hydrogen generator, comprising at least a hydrogen generator, a liquid in said hydrogen generator to produce hydrogen from, and a ceramic that emits infrared at wavelengths covering at least a portion of 3-20 micrometers range so that said liquid can be excited with infrared at said wavelengths before or during the production of hydrogen for improved hydrogen production efficiency. The use of infrared-excited electrolyte solution in a hydrogen generator helps reduce the energy consumption, lower operating voltage, and thus reduce the cost of the production of hydrogen.
摘要:
The present invention relates to a method for preparing a carbonate of an alkali ion using an electrolysis system, more particularly to an improved method for preparing a carbonate of an alkali ion, including eluting an alkali ion from an inorganic material containing the alkali ion and converting the eluted alkali ion to a carbonate, using an electrolysis system which generates an eluting agent and a quick precipitating agent used for the elution of the alkali ion and the conversion to the carbonate at the same time.
摘要:
A low-voltage, low-energy electrochemical system and method of removing protons and/or producing a base solution comprising hydroxide and carbonate/bicarbonate ions, utilizing carbon dioxide in a cathode compartment that is partitioned into a first cathode electrolyte compartment and a second cathode electrolyte compartment such that liquid flow between the cathode electrolyte compartments is possible, but wherein gaseous communication between the cathode electrolyte compartments is restricted. Carbon dioxide gas in one cathode electrolyte compartment is utilized with the cathode electrolyte in both compartments to produce the base solution with less that 3V applied across the electrodes.
摘要:
Provided herein are methods and systems including contacting an anode electrolyte with an anode; contacting a cathode electrolyte with a cathode where cathode is a fine mesh cathode; and applying voltage across the anode and the cathode. The methods and systems further may include treating hydroxide ions produced at the cathode with carbon from a source of carbon.
摘要:
A method for generating a hydride gas of metal M1 in an electrochemical cell comprising a cathode comprising metal M1, a sacrificial anode comprising metal M2, an initial concentration of aqueous electrolyte solution comprising a metal hydroxide, M3OH, wherein the sacrificial metal anode electrochemically oxidizes in the presence of the aqueous electrolyte solution comprising M3OH to form a metal salt, and the hydride gas of metal M1 is formed by reducing the metal M1 of the cathode. The method comprises the steps of determining solubility profile curves of the metal salt as the M3OH is consumed and the metal oxide is formed by the oxidation reaction at various concentrations of M3OH; determining a maximum concentration of M3OH that, as it is consumed, does not yield a concentration of metal salt that precipitates out of the electrolyte solution; and choosing a concentration of M3OH that is in the range of at and within 5% less than the maximum concentration of M3OH to be the initial concentration of M3OH.
摘要:
A clear solution and a method for preparing the solution which has a pH in the range of from 10 to 13.9 and containing sulfate ions in a concentration range less than 500 parts per million. The solution is prepared by mixing two solutions in which one solution has one equivalent of magnesium sulfate and an equivalent of sulfuric acid and the second solution has an equivalent of Ca (OH).sub.2 and two equivalents of K.sub.2 OH. It is believed that CaSO.sub.4 precipitates in the mixed solution and causes coprecipitation of potassium, perhaps as double salt with the Ca leaving OH stabilized by hydration and magnesium ions.