Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines mikroelektromechanischen Wandlers, das die folgenden Schritte aufweist: -Herstellen einer Vielzahl von mikroelektromechanischen Wandlern (1) auf einem einzigen Wafer (13), wobei jeder Wandler (1) eine Membran (3) aufweist, -Aufteilen des Wafers (13) in zumindest einen ersten und einen zweiten Bereich (14, 15), -Feststellen der mechanischen Spannungen einer Stichprobe (18) von Membranen (3) des ersten Bereichs (14) und Vergleich mit einem vorgegebenen Soll-Wert, -Feststellen der mechanischen Spannungen einer Stichprobe (18) von Membranen (3) des zweiten Bereichs (14) und Vergleich mit dem vorgegebenen Soll-Wert, -Anpassen der Spannungen der Membranen (3) in dem ersten Bereich (14) an den vorgegebenen Soll-Wert, und -Anpassen der Spannungen der Membranen (3) in dem zweiten Bereich (15) an den vorgegebenen Soll-Wert.
Abstract:
Le procédé de fabrication d'une pièce micromécanique en silicium renforcé comporte les étapes de : - micro-usiner la pièce, ou un lot de pièces dans une plaquette de silicium; - former, sur toute la surface de la pièce, en une ou plusieurs étapes, une couche de dioxyde de silicium, de manière à obtenir une épaisseur de dioxyde de silicium au moins cinq fois supérieure à l'épaisseur d'un dioxyde de silicium natif; - retirer la couche de dioxyde de silicium par attaque chimique.
Abstract:
La pièce de micro-mécanique, par exemple une pièce d’un mouvement horloger comporte une âme en silicium (1) don’t tout ou partie de la surface (3) est revêtue d’un matériau amorphe épais (2). Ce matériau est de préférence le dioxyde de silicium et a une épaisseur au moins cinq fois supérieure à celle du dioxyde de silicium natif.
Abstract:
Forming micro-probe tips for an atomic force microscope, a scanning tunneling microscope, a beam electron emission microscope, or for field emission, by first thinning a tip (11) of a first material, such as silicon. The tips (11) are then reacted with a second material, such as atoms from an organic or ammonia vapor, at a temperature of about 1000 DEG C +/- 200 DEG C and vacuum conditions for several minutes. Vapors such as methane, propane or acetylene will be converted to SiC or WC while ammonia will be converted to Si3N4. The converted material will have different physical, chemical and electrical properties. For example, a SiC tip will be superhard, approaching diamond in hardness. Electrically conductive tips are suitable for field emission.
Abstract:
A system and method for manipulating the structural characteristics of a MEMS device including etching a plurality of holes into the surface of a MEMS device, wherein the plurality of holes comprise one or more geometric shapes determined to provide specific structrual characteristics desired in the MEMS device.
Abstract:
A method of forming a device with a controlled electrode gap width includes providing a substrate, forming a functional layer on top of a surface of the substrate, forming a sacrificial layer above the functional layer, exposing a first portion of the functional layer through the sacrificial layer, forming a first spacer layer on the exposed first portion of the functional layer, forming an encapsulation layer above the first spacer layer, and vapor etching the encapsulated first spacer layer to form a first gap between the functional layer and the encapsulation layer.
Abstract:
This invention provides a front-side silicon micromachining process for the fabrication of suspended Porous Silicon membranes in the form of bridges or cantilevers and of thermal sensor devices employing these membranes. The fabrication of the suspended Porous Silicon membranes comprises the following steps: (a) formation of a Porous Silicon layer (2) in, at least one, predefined area of a Silicon substrate (1), (b) definition of etch windows (5) around or inside said Porous Silicon layer (2) using standard photolithography and (c) selective etching of the Silicon substrate (1), underneath the Porous Silicon layer (2), by using dry etching techniques to provide release of the Porous Silicon membrane and to form a cavity (6) under the said Porous Silicon layer. Furthermore, the present invention provides a method for the fabrication of thermal sensors based on Porous Silicon membranes with minimal thermal losses, since the proposed methodology combines the advantages that result from the low thermal conductivity of Porous Silicon and the use of suspended membranes. Moreover, the front-side micromachining process proposed in the present invention simplifies the fabrication process. Various types of thermal sensor devices, such as calorimetric-type gas sensors, conductometric-type gas sensors and thermal conductivity sensors are described utilizing the proposed methodology.
Abstract:
The present invention relates to a cantilever or membrane comprising a body and an elongated beam attached to the body. The elongated beam includes a first layer comprising a first material, a second layer comprising a second material having an elastic modulus different to that of the first material, a third layer comprising a third material having an elastic modulus different to that of the first material, where the first layer is sandwiched between the second layer and the third layer.
Abstract:
Mikromechanische Struktur (100), aufweisend: wenigstens einen elastisch deformierbaren ersten Bereich (10), der wenigstens abschnittsweise einen definiert piezoelektrisch dotierten zweiten Bereich (10a) aufweist; wenigstens einen vierten Bereich (30), in den die im zweiten Bereich (10a) generierten elektrischen Ladungen leitbar sind; und wenigstens einen mit dem zweiten und dem vierten Bereich (10a, 30) elektrisch verbundenen dritten Bereich (20), in welchem ein durchfließender elektrischer Strom in thermische Energie umwandelbar ist.
Abstract:
The present invention generally relates to methods for increasing the lifetime of MEMS devices by reducing the landing velocity on switching by introducing gas into the cavity surrounding the switching element of the MEMS device. The gas is introduced using ion implantation into a cavity close to the cavity housing the switching element and connected to that cavity by a channel through which the gas can flow from one cavity to the other. The implantation energy is chosen to implant many of the atoms close to the inside roof and floor of the cavity so that on annealing those atoms diffuse into the cavity. The gas provides gas damping which reduces the kinetic energy of the switching MEMS device which then should have a longer lifetime.