Abstract:
A charging device configured to charge a mobile device through the solar cells integrated on the mobile device. The charging device converts wall power to light energy which can be absorbed by the solar cells and then converted to electricity for storage in the rechargeable battery of the mobile device. The charging device includes a light source configured to emit a light beam having a spectrum tuned to the spectral response of the solar cells. The charging device includes a proximity sensor for detecting the presence of a mobile device within the charging device housing and responsively signaling the activation of the light source. The charging device includes logic for wirelessly communicating with the mobile device as well as controlling the charging process in various stages and aspects. The light source may be LEDs that also serve to transmit light communication signals to the mobile device.
Abstract:
A photovoltaic module is disclosed. The photovoltaic module comprises an array of shingled tiles disposed between a transparent front substrate and a back substrate, wherein the array of shingled tiles comprises a plurality of photovoltaic tiles in electrically contact with each other and positioned in overlapping rows. Each photovoltaic tile comprises a front metallic contact layer disposed on an epitaxial film stack disposed on a back metallic contact layer disposed on a support carrier layer. The photovoltaic module includes at least one busbar in electrical contact with the array of shingled tiles and disposed between the front and back glass substrates. The photovoltaic module also includes an encapsulation layer between the front and back glass substrates.
Abstract:
Embodiments of the invention generally relate to apparatuses for chemical vapor deposition (CVD) processes. Embodiments of the invention generally relate to apparatuses and methods for chemical vapor deposition (CVD) processes. In one embodiment, a heating lamp assembly for a vapor deposition reactor system is provided which includes a lamp housing disposed of on an upper surface of a support base and containing a first lamp holder and a second lamp holder and a plurality of lamps extending from the first lamp holder to the second lamp holder. The plurality of lamps may have split filament lamps and/or non-split filament lamps, and in some examples, split and non-split filament may be alternately disposed between the first and second lamp holders. A reflector may be disposed on the upper surface of the support base between the first and second lamp holders. The reflector may contain gold or a gold alloy.
Abstract:
Present embodiments generally relate to support structures for thin film components and methods for fabricating the support structures. In one embodiment, an apparatus comprises a device structure including portions of an electronic device; a support structure coupled to the device structure; wherein the support structure supplements features of the device structure and the support structure includes: a metal component coupled to the device structure; and a non-metal component coupled to the metal component. The support component can supplement structural and mechanical integrity of the device structure and functional operations of the device structure. In one embodiment, the metal component includes at least one layer of metal material and the non-metal component includes at least one layer of non metal material (e.g., polymeric material, etc.). The metal component can have greater stiffness characteristics with respect to the device structure and the non-metal component can have greater flexibility characteristics with respect to the metal layer component. The support structure can be configured to reflect light towards the device structure. The support structure can also be configured to conduct electricity from the device structure.
Abstract:
Embodiments of the invention generally relate to apparatuses for chemical vapor deposition (CVD) processes. In one embodiment, a reactor lid assembly for vapor deposition is provided which includes a first showerhead assembly and an isolator assembly disposed next to each other on a lid support, and a second showerhead assembly and an exhaust assembly disposed next to each other on the lid support, wherein the isolator assembly is disposed between the first and second showerhead assemblies and the second showerhead assembly is disposed between the isolator assembly and the exhaust assembly.
Abstract:
Embodiments of the invention generally relate to apparatuses for chemical vapor deposition (CVD) processes. In one embodiment, a showerhead assembly is provided which includes a body having a centralized channel extending through upper and lower portions of the body and extending parallel to a central axis of the body. The showerhead assembly contains an optional diffusion plate having a first plurality of holes and disposed within the centralized channel, an upper tube plate having a second plurality of holes and disposed within the centralized channel below the diffusion plate, a lower tube plate having a third plurality of holes and disposed within the centralized channel below the upper tube plate, and a plurality of tubes extending from the upper tube plate to the lower tube plate. Each tube is coupled to and in fluid communication with individual holes of the upper and lower tube plates.
Abstract:
Embodiments of the invention generally relate to apparatuses for chemical vapor deposition (CVD) processes. In one embodiment, a wafer carrier track for levitating and traversing a wafer carrier within a vapor deposition reactor system is provided which includes upper and lower sections of a track assembly having a gas cavity formed therebetween. A guide path extends along an upper surface of the upper section and between two side surfaces which extend along and above the guide path and parallel to each other. A plurality of gas holes along the guide path extends from the upper surface of the upper section, through the upper section, and into the gas cavity. In some examples, the upper and lower sections of the track assembly may independently contain quartz, and in some examples, may be fused together.
Abstract:
Embodiments of the invention generally relate to apparatuses and methods for producing epitaxial thin films and devices by epitaxial lift off (ELO) processes. In one embodiment, a method for forming thin film devices during an ELO process is provided which includes coupling a plurality of substrates to an elongated support tape, wherein each substrate contains an epitaxial film disposed over a sacrificial layer disposed over a wafer, exposing the substrates to an etchant during an etching process while moving the elongated support tape, and etching the sacrificial layers and peeling the epitaxial films from the wafers while moving the elongated support tape. Embodiments also include several apparatuses, continuous-type as well as a batch-type apparatuses, for forming the epitaxial thin films and devices, including an apparatus for removing the support tape and epitaxial films from the wafers on which the epitaxial films were grown.
Abstract:
Methods and apparatus are provided for converting electromagnetic radiation, such as solar energy, into electric energy with increased efficiency when compared to conventional solar cells. In one embodiment of a photovoltaic (PV) device, the PV device generally includes an n-doped layer and a p+-doped layer adjacent to the n-doped layer to form a p-n layer such that electric energy is created when electromagnetic radiation is absorbed by the p-n layer. The n-doped layer and the p+-doped layer may compose an absorber layer having a thickness less than 500 nm. Such a thin absorber layer may allow for greater efficiency and flexibility in PV devices when compared to conventional solar cells.
Abstract:
A thin film, flexible optoelectronic device is described. In an aspect, a method for fabricating a single-junction optoelectronic device includes forming a p-n structure on a substrate, the p-n structure including a semiconductor having a lattice constant that matches a lattice constant of substrate, the semiconductor including a dilute nitride, and the single-junction optoelectronic device including the p-n structure; and separating the single-junction optoelectronic device from the substrate. The dilute nitride includes one or more of GaInNAs, GaInNAsSb, alloys thereof, or derivatives thereof.