Abstract:
An assembly for making and/or using carbon nanotubes includes a substrate and at least one of carbon nanotubes and precursors thereof. The substrate is SiO2 and has a thickness of less than 500 µm. Further, the substrate is bendable and has a surface with non-flat or non-polished texture such that surface comprises raised and recessed features. Carbon nanotubes and/or precursors thereof are coupled to recessed features of the substrate.
Abstract:
Methods of fabricating dimensional silica-based substrates or structures comprising a porous silicon layers are contemplated. According to one embodiment, oxygen is extracted from the atomic elemental composition of a silica glass substrate by reacting a metallic gas with the substrate in a heated inert atmosphere to form a metal-oxygen complex along a surface of the substrate. The metal-oxygen complex is removed from the surface of the silica glass substrate to yield a crystalline porous silicon surface portion and one or more additional layers are formed over the crystalline porous silicon surface portion of the silica glass substrate to yield a dimensional silica-based substrate or structure comprising the porous silicon layer. Embodiments are also contemplated where the substrate is glass-based, but is not necessarily a silica-based glass substrate. Additional embodiments are disclosed and claimed.
Abstract:
This invention relates to a method of making glass. In certain example embodiments, a major surface(s) of the glass is treated with aluminum chloride (e.g., AICI 3 ) at or just prior to the annealing lehr. The aluminum chloride treatment at or just prior to the annealing lehr, in either a float or patterned line glass making process, is advantageous in that it allows the treatment to be performed at a desirable glass temperature and permits exhaust functions in or proximate the annealing lehr to remove byproducts of the treatment in an efficient manner.
Abstract:
1. Substrat aus einem siliziumhaltigen Grundmaterial für einen Einsatz mit Sensoren 2.1 Gas- und Flüssigkeitssensoren weisen in der Regel alle einen ähnlichen Aufbau auf. Sie bestehen zumeist aus einem Substrat, auf das zur Detektion einer bestimmten Substanz eine sensitive Schicht aufgebracht wird. Das Aufbringen einer sensitiven Schicht auf das Substrat führt zu einem Zweischicht-System und erfordert für den Aufbau stabiler Sensoren eine gute Haftung zwischen Substrat und sensitiver Schicht. Zudem bestehen die sensitiven Schichten häufig aus Polymeren und organischen Materialien und können, aufgrund der unzureichenden chemischen und thermischen Stabilität, in vielen Bereichen, z.B. in der chemischen Prozesskontrolle, nicht eingesetzt werden. Das neue Substrat für den Einsatz in sensorischen Anwendungen soll es ermöglichen, optisch, chemisch und thermisch stabile Sensoren vorzugsweise mit einem Einkomponenten-System herzustellen. 2.2 Das erfindungsgemäße Substrat hat gegenüber dem Stand der Technik den Vorteil, dass durch eine gleichmäßige, poröse Oberfläche des Substrates mit einem definierten Porendurchmesser, eine homogene Verteilung der sensitiven Komponente und eine Erhöhung der Reproduzierbarkeit bei der Herstellung von Sensoren erreicht wird. Ein weiterer Vorteil liegt darin , dass das Substrat ohne den Einsatz jeglicher Polymerkomponenten auskommen kann und somit den Aufbau chemisch und thermisch stabiler Sensoren ermöglicht. 2.3 Das Substrat ermöglicht durch seien spezifische Beschaffenheit den Aufbau neuer Sensoren für den Einsatz unter chemischen und thermischen Bedingungen, unter denen bisher keine Sensoren eingesetzt werden konnten.
Abstract:
A process for the production of a substrate having antimicrobial properties is described. It comprises a step consisting of the déposition of a métal non-gelling layer comprising an inorganic antimicrobial agent, starting from a precursor, in métal, colloid, chelate or ion form on at least one of the surfaces of the glass substrate; and a step consisting of the diffusion of the agent into said at least one surface of the substrate by thermal treatment. Alternatively, the substrate may be coated with an underlayer or a topcoat and the diffusion occurs either in the underlayer or in the topcoat. Glass and metallic substrates having antimicrobial properties are also described. In particular, a substrate exhibiting a bactericidal activity measured in accordance with standard JIS Z 2801 of higher than log 2.
Abstract translation:描述了制备具有抗微生物性质的基材的方法。 它包括由玻璃基材的至少一个表面上的由前体,以胶体,胶体,螯合物或离子形式开始的包含无机抗微生物剂的非凝胶层的位置的步骤。 以及通过热处理将试剂扩散到基材的所述至少一个表面中的步骤。 或者,基底可以涂覆有底层或面漆,并且扩散发生在底层中或在顶涂层中。 还描述了具有抗微生物性质的玻璃和金属基材。 具体而言,表现出根据JIS Z 2801标准高于log 2的杀菌活性的基材。
Abstract:
An optical article including a core; at least one cladding layer; and a narrow fluorine reservoir between the core and the cladding layer. The fluorine reservoir has a higher concentration of fluorine than either the cladding layer or the core. One particular embodiment includes a core including a halide-doped silicate glass that comprises approximately the following in cation-plus-halide mole percent 0.25-5 mol% Al 2 O 3 , 0.05-1.5 mol% La 2 O 3 , 0.0005-0.75 mol% Er 2 O 3 , 0.5-6 mol% F, 0-1 mol% Cl.
Abstract translation:一种包括芯的光学制品; 至少一层包层; 以及在芯和包层之间的窄氟储存器。 氟储存器具有比包覆层或芯层更高的氟浓度。 一个具体实施方案包括包含卤化物掺杂的硅酸盐玻璃的核,其在阳离子加 - 卤化物摩尔百分比为0.25-5摩尔%Al 2 O 3,0.05-1.5摩尔%La 2 O 3,0.0005-0.75摩尔%Er 2 O 3,0.5-6 mol%F,0-1mol%Cl。
Abstract:
Ultrafast laser pulses focused by lens or optics (18) are used to produce subsurface channels (26, 28, 30) in a variety of insulating materials (32), including silica, quartz, diamond, silicon, or other materials of interest to the electronics industry. These channels may be used as optical waveguides, and an electrical conductor may be introduced into the channels to provide electrically conducting interconnects or dual waveguides (optical/electrical). In a further embodiment, the coolant may be circulated within the subsurface channels to prevent heat buildup in electrical components.
Abstract:
A process for removing metal species from solution comprising passing the liquid over a composition comprising a support such as a porous silicate glass or silica gel or charcoal having interconnected pores and containing water soluble amine complexing agents absorbed on the support capable of forming a stable complex with the metal species. The preferred amine complexing agent is triethylenetetramine. The process is especially useful for removing radioactive cobalt from liquid waste streams.
Abstract:
This invention relates to porous microparticulate carriers that incorporate radioisotopes to form radiomicroparticles for radiation therapy and imaging. The invention also provides methods of preparing the microparticles and methods of treatment using the radiomicroparticles.