Abstract:
본 발명의 일실시예에 따른 다공성 구조체는 다수의 연결통로를 통해 3차원으로 서로 연결된 공극을 다수 구비한 프레임으로 구성된다. 본 발명의 일실시예에 따른 다공성 구조체는 프레임에 의해 구현된 다수의 공극이 최조밀 분포 상태를 갖고, 대칭구조로 형성된 다수의 연결통로에 의해 다수의 공극이 서로 3차원으로 연결되므로 공극률을 극대화할 수 있는 효과가 있다. 한편, 본 발명의 일실시예에 따른 다공성 다중 구조체는 3차원으로 서로 연결된 제 1 공극을 다수 구비한 제 1 다공성 구조체; 및 상기 제 1 공극과 다른 직경으로 3차원으로 서로 연결된 제 2 공극을 다수 구비하고, 상기 제 1 다공성 구조체를 둘러싸 접합된 제 2 다공성 구조체;를 포함한다. 또한, 본 발명의 다른 실시예에 따른 다공성 다중 구조체는 마이크로 직경을 갖고 3차원으로 서로 연결된 다수의 제 1 공극 및 상기 제 1 공극 주위에 상기 제 1 공극보다 작은 직경으로 3차원으로 서로 연결된 제 2 공극을 다수 구비하는 프레임을 포함한다.
Abstract:
Disclosed herein is a method comprising disposing a first particle in a reactor; the first particle being a magnetic particle or a particle that can be influenced by a magnetic field, an electric field or a combination of an electrical field and a magnetic field; fluidizing the first particle in the reactor; applying a uniform magnetic field, a uniform electrical field or a combination of a uniform magnetic field and a uniform electrical field to the reactor; elevating the temperature of the reactor; and fusing the first particles to form a monolithic solid.
Abstract:
Machining and cutting tools including, but not limited to, rotary drill bits, mining tools, milling tools, wood shredders, reamers and wire dies formed with at least one substrate having a layer of polycrystalline diamond disposed thereon. The polycrystalline diamond layer may be generally described as a polycrystalline diamond compact (PDC) or PDC layer. The PDC may be formed by using an intermetallic aluminide catalyst. One example of such catalyst may include nickel aluminide used to form diamond to diamond bonds between adjacent diamond particles.
Abstract:
Ultraporous sol gel monoliths and methods for preparing the same are provided, having superior flow characteristics for chromatography and analytical chemistry applications. The methods for forming an ultra porous sol-gel monolith include (a) forming a solution comprising a porogen, a matrix dissolving catalyst and a sol gel precursor; (b) allowing the solution to form a gel; and (c) drying the gel at an elevated temperature. The ultraporous sol gel monoliths are characterized by a porosity of up to about 97%, a BET surface area of at least about 50 m 2 /g and substantially no micropores.
Abstract:
A ceramic part having a surface exposed to the interior space, the surface having been shaped and plasma conditioned to reduce particles thereon by contacting the shaped surface with a high intensity plasma. The ceramic part can be made by sintering or machining a chemically deposited material. During processing of semiconductor substrates, particle contamination can be minimized by the ceramic part as a result of the plasma conditioning treatment. The ceramic part can be made of various materials such as alumina, silicon dioxide, quartz, carbon, silicon, silicon carbide, silicon nitride, boron nitride, boron carbide, aluminum nitride or titanium carbide. The ceramic part can be various parts of a vacuum processing chamber such as a liner within a sidewall of the processing chamber, a gas distribution plate supplying the process gas to the processing chamber, a baffle plate of a showerhead assembly, a wafer passage insert, a focus ring surrounding the substrate, an edge ring surrounding an electrode, a plasma screen and/or a window.
Abstract:
Mesoporous desigels are fabricated as nitrides, carbides, borides, and silicides of metals, particularly transition metals, and most particularly early transition metals. The desigels are prepared by forming a gel of a metallic compound, and removing solvent from the gel. In some instances, the thus produced desigel may be further reacted to change its composition, while preserving its mesoporous structure. The materials are particularly suited as electrodes for capacitors, including ultracapacitors, and for use in batteries.
Abstract:
This disclosure enables direct 3D printing of preceramic polymers, which can be converted to fully dense ceramics. Some variations provide a preceramic resin formulation comprising a molecule with two or more C=X double bonds or C≡X triple bonds, wherein X is selected from C, S, N, or O, and wherein the molecule further comprises at least one non-carbon atom selected from Si, B, Al, Ti, Zn, P, Ge, S, N, or O; a photoinitiator; a free-radical inhibitor; and a 3D-printing resolution agent. The disclosed preceramic resin formulations can be 3D-printed using stereolithography into objects with complex shape. The polymeric objects may be directly converted to fully dense ceramics with properties that approach the theoretical maximum strength of the base materials. Low-cost structures are obtained that are lightweight, strong, and stiff, but stable in the presence of a high-temperature oxidizing environment.
Abstract:
Provided in one embodiment is a method of making, comprising: applying a hydrodynamic cavitation process to a raw material comprising particles comprising a metal-containing material or a carbon containing material of a first size to produce a slurry having particles comprising the metal-containing material or the carbon-containing material of a second size, smaller than the first size; and tape casting the slurry to form a green tape. Apparatuses employed to apply the method and the exemplary compositions made in accordance with the method are also provided.
Abstract:
A method including applying layers of multiple constituents where the constituents are capable of producing a non-equilibrium condition on the contacting surfaces of a ceramic matrix composite component and a gas turbine engine component where one outer coating includes a first constituent and the other outer coating includes a second constituent; forming a component assembly with the ceramic matrix composite component coupled to the gas turbine engine component with contact between the outer coatings; adding an energy to facilitate an equilibrium reaction between the first constituent of the first outer coating and the second constituent of the second outer coating; and as a result of adding the energy, forming a bond structure in the component assembly with a product of the equilibrium reaction where the bond structure affixes the ceramic matrix composite component to the gas turbine engine component between the first constituent and the second constituent.
Abstract:
Synthetic ceramic proppants are described. Proppants having a monodispersity of 3-sigma distribution or lower are also described, including methods to make these proppants and methods of using these proppants.