Abstract:
A method of manufacture of a powder comprising, or consisting essentially of, microspheres, the method comprising: providing a feed powder; and applying at least one spheroidisation flame to the powder. The powder may be suitable for use in medical and/or non-medical applications.
Abstract:
A proppant composition may include at least about 50 wt% total silica and up to about 50 wt% total alumina and a connected porosity greater than or equal to about 5%, A proppant precursor composition may include an alumina- or aluminosilicate- containing material and diatomaceous earth, wherein the diatomaceous earth may be greater than or equal to about 25 wt%. A method of making a proppant may include mixing an alumina- or aluminosilicate-containing material and diatomaceous earth to form a precursor composition, pelletizing the precursor composition, and sintering the pelletized precursor composition to form a sintered proppant having a connected porosity greater than or equal to about 5%. A method of treating a fracture site may include delivering a sintered proppant including an active agent to a well site, and dispersing the active agent from the sintered proppant within the well site.
Abstract:
The present invention relates to a porous aggregate, comprising Al 2 O 3 , SiO 2 and optionally Fe 2 O 3 , having a d 50 of equivalent pore diameter between 1 μm or more and 50 μm or below and a total porosity between 20% and 60%, for use in the formation of monolithic refractories. Also part of the invention is a method of formation for said aggregates, their use in the formation of monolithic refractories and monolithic refractories comprising such aggregates.
Abstract translation:本发明涉及一种多孔骨料,其包含Al 2 O 3,SiO 2和任选的Fe 2 O 3,其具有等效孔径在1μm以上至50μm以下的总孔隙率为20%至60%的d 50,用于形成 的单片耐火材料。 本发明的另一部分是所述聚集体的形成方法,它们在形成整体耐火材料中的用途以及包含这种聚集体的整体耐火材料。
Abstract:
A method for manufacturing of light ceramic proppants made from a mixture of raw materials that is mechanically granulated in a granulator or that is granulated in a spray dryer from a pourable ceramic mass, to obtain granulate having a granule size of 150 –1700 μm (12 –100 U.S. Mesh, ASTM E11 –04, ISO 13503 -2), and next the granulate is fired and the fired granulate is fractioned. The mixture of raw materials is prepared from: illite-beidellite-kaolinite high-plastic clays of the Poznan series in the amount of 10% to 40% by weight; kaolinite clays in the amount of 10% to 45% by weight; kaolin in the amount of 20% to 40% by weight; fly ash from brown coal combusted in a power plant in the amount of 10% to 35% by weight; and treatment agents in the amount of up to 10% by weight. The mixture of raw materials is mixed and homogenized in a homogenizer, and the obtained granulate is fed to a fluidised bed dryer, in which it is dried to a moisture content below 3%, and the granulate is fired in a rotary furnace in a temperature from 1150°C up to 1410°C in time from 120 to 600 min, obtaining proppants which contain from 18% to 32% by weight of Al 2 O 3 , from 40% to 76% by weight of SiO 2 , and have a specific gravity from 2,15 Mg/m 3 to 2,90 Mg/m 3 and a bulk density from 1,35 Mg/m 3 to 1,70 Mg/m 3 , depending on the firing time.
Abstract translation:一种轻质陶瓷支撑剂的制造方法,所述轻质陶瓷支撑剂由在造粒机中机械造粒或由可倾倒陶瓷块在喷雾干燥器中造粒的原料混合物制成,得到颗粒尺寸为150-11700μm的颗粒(12 -100 US网,ASTM E11 -04,ISO13503-2),接下来将颗粒烧成,并将烧制的颗粒分级。 原料混合物由波兹南系列的伊利石 - 贝多宝 - 高岭土高粘土制成,重量占10%至40%; 10%〜45%重量的高岭石粘土; 高岭土的用量为20〜40%(重量); 发电厂燃煤褐煤的粉煤灰量为10%〜35%; 和处理剂的量高达10重量%。 将原料混合物在均化器中混合均化,将得到的颗粒送入流化床干燥器中,将其干燥至含水量低于3%,并将该颗粒在旋转炉中以温度 从120℃至120℃,从1150℃升至1410℃,得到含有18重量%至32重量%的Al 2 O 3,40重量%至76重量%的SiO2的支撑剂,其比重为2 ,15Mg / m 3至2.950Mg / m 3,堆积密度为1,35Mg / m 3至1,70Mg / m 3,这取决于烧制时间。
Abstract:
A process for sintering silicon carbide is provided which includes the steps of providing a silicon carbide powder of silicon carbide granules; purifying the silicon carbide powder; subjecting the purified silicon carbide powder to a gel-casting process; removing the gel-cast part from the mold; drying the gel-cast part; obtaining a dried cast ceramic part (a green body) which is capable of green machining into a final desired shape; firing the green body in an oven at temperatures ranging from about 100°C to about 1900°C to remove or burn out any polymer remaining in the ceramic; and sintering the green body at temperatures ranging from about 1600°C to less than about 2200°C.
Abstract:
Изобретение относится к области получения низкоплотных теплопроводящих материалов на основе терморасширенного графита, которые могут использоваться в качестве теплопроводных, а также может быть использовано для распределения тепла, в т.ч. и в области высоких температур. Способ изготовления низкоплотного теплопроводящего материала из терморасширенного графита, характеризующийся тем, что включает следующие стадии: (А) получение частиц терморасширенного графита нагревом частиц гидролизованного нитрата графита с удельной энергией нагрева, равной или превышающей 4,7 кДж/г в атмосфере продуктов сгорания жидкого или газообразного топлива на воздухе с коэффициентом избытка воздуха в пересчете на топливо λ=0,8-1,1; (Б) последующее компактирование упомянутого терморасширенного графита до плотности от 0,03 до 0,1 г/см 3 . Изобретение позволяет получить низкоплотный теплопроводящий материал, обладающий высокими прочностью на изгиб и модулем упругости и характеризующийся отсутствием кислотных коррозионноактивных добавок.
Abstract:
A porous ceramic body useful for making particulate filters is comprised of acicular mullite grains bound together by a ceramic grain boundary phase, wherein said porous acicular mullite body has a bulk carbon content from 0.005% to 10% by weight of the body. The porous body may be made by forming a mixture of mullite precursors (e.g., alumina and silica) and a compound that is inorganic carbon (graphitic or amorphous), inorganic compound that contains carbon (e.g., metal carbide) or an organic compound that decomposes to form inorganic carbon or an inorganic compound that contains carbon and heating in an atmosphere containing fluorine to form the acicular mullite body and removing the fluorine.
Abstract:
The present invention relates to anodic porous alumina (APA) in the form of microparticles, characterized in that it contains interconnected through nanopores, and to its use in the preparation of a new composite material, which is useful for example in the field of conservative dentistry. The invention further relates to a process for preparing the nanoporous alumina of the invention in microparticles.
Abstract:
A roofing granule includes a glass substrate and a plurality of pores in the glass substrate such that the roofing granule has a minimum total solar reflectance of at least 50%.