Abstract:
A metal-on-ceramic substrate comprises a ceramic layer (210), a first metal layer (240), and a bonding layer (220) joining the ceramic layer to the first metal layer. The bonding layer includes thermoplastic polyimide adhesive that contains thermally conductive particles. This permits the substrate to withstand most common die attach operations, reduces residual stress in the substrate, and simplifies manufacturing processes. The thermally conductive particles are preferably chosen from the group consisting of silver, copper, gold, graphene, carbon nanotubes, hexagonal BN, wurtzitic BN, cubic BN, BN nanotubes, diamond, AIN, and Si 3 N 4. The process for creating the circuit substrate comprises: placing the bonding layer between the ceramic layer and the first metal layer; applying pressure to bond the ceramic layer to the first metal layer using the bonding layer; and curing the bonding layer.
Abstract:
A light generator comprises a light conversion device (10) and a light source (18) arranged to apply a light beam (L) to a light conversion element (20). The light conversion device (10) includes: an optoceramic (20) or other solid phosphor element comprising one or more phosphors embedded in a ceramic, glass, or other host; a metal heat sink (12); and a solder bond (40) attaching the optoceramic phosphor element (20) to the metal heat sink (12). The optoceramic phosphor element (20) does not undergo cracking in response to the light source (18) applying a light beam (L) of beam energy effective to heat the optoceramic phosphor element (20) to the phosphor quenching point.
Abstract:
Cutting elements include a diamond-bonded body attached with a substrate. The substrate has a coercivity of greater than about 200 Oe, and has a magnetic saturation of from about 73 to 90. The diamond-bonded body has a compressive stress at the surface of greater than about 0.9 GPa after heat treatment, and greater than about 1.2 GPa prior to heat treatment.
Abstract:
본 발명은 세라믹 기판 제조 방법 및 이 제조방법으로 제조된 세라믹 기판에 관한 것으로, 세라믹 기재 상에 시드층, 브레이징 필러층, 금속박을 적층하여 브레이징하여 상기 세라믹 기재에 상기 금속박을 브레이징 접합층을 통해 견고히 접합하는 것으로 금속박과 세라믹 기재의 접합력을 크게 향상시킨 것이다.
Abstract:
Part made of a ceramic comprising at least one metalized outer surface, comprising a compositionally graded coating, said coating successively comprising from the outer surface toward the ceramic in the direction of the thickness of the coating: a surface layer formed by a metal M; a layer of an oxide of the metal M: MkOw where k ranges from 1 to 3 and w ranges from 1 to 4; a layer of a reaction compound between the oxide of a metal M and the ceramic which has a composition gradient, which is preferably continuous, in the direction of the thickness of said layer, with a content of metal M that decreases, preferably continuously, toward the ceramic. Process for preparing this part. Process for assembling a first part made of a ceramic with a second part made of a metal or made of a ceramic in which at least one surface of a first part made of a ceramic is metalized by said process. Metal M is preferably Cu.
Abstract:
There is herein described a ceramic wavelength converter having a high reflectivity reflector. The ceramic wavelength converter is capable of converting a primary light into a secondary light and the reflector comprises a reflective metal layer and a dielectric buffer layer between the ceramic wavelength converter and the reflective metal layer. The buffer layer is non-absorbing with respect to the secondary light and has an index of refraction that is less than an index of refraction of the ceramic wavelength converter. Preferably the reflectivity of the reflector is at least 80%, more preferably at least 85% and even more preferably at least 95% with respect to the secondary light emitted by the converter.
Abstract:
Es wird ein Verfahren zur Herstellung eines keramischen Konversionselements (1) angegeben. Dazu werden zumindest vier Funktionsschichten bereitgestellt. Eine Funktionsschicht ist als eine erste Leuchtschicht (10) ausgebildet, die ein Oxid aufweist und dazu eingerichtet ist, Licht eines ersten Wellenlängenbereichs (100) zumindest teilweise in Licht eines zweiten Wellenlängenbereichs (200) zu konvertieren. Eine andere Funktionsschicht ist als eine zweite Leuchtschicht (20) ausgebildet, die ein Nitrid aufweist und dazu eingerichtet ist, Licht des ersten Wellenlängenbereichs (100) zumindest teilweise in Licht eines dritten Wellenlängenbereichs (300) zu konvertieren. Eine andere Funktionsschicht ist als eine erste Zwischenschicht (11) und noch eine andere Funktionsschicht als eine zweite Zwischenschicht (21) ausgebildet. Die erste Zwischenschicht (11) weist ein Oxid auf, die zweite Zwischenschicht (21) weist ein Nitrid oder Oxinitrid auf. Die Funktionsschichten werden so angeordnet, dass die erste Zwischenschicht (11) zwischen der ersten Leuchtschicht (10) und der zweiten Zwischenschicht (21) liegt und die zweite Zwischenschicht (21) zwischen der ersten Zwischenschicht (11) und der zweiten Leuchtschicht (20) liegt. Anschließend werden die Funktionsschichten über einen Sinterprozess miteinander verbunden.