Abstract:
An amplifier (10) for a semiconductor circuit provides two circuit paths between VCC and ground, each including the source-drain path of a corresponding primary transistor (23, 28). Two impedances (16, 18) are coupled to respective inputs (12, 14). The primary transistors are kept in saturation so that the voltage differential is developed at outputs (38, 40) located along the two circuit paths. Also, a clamp circuit has a common node (30) coupling the gate electrodes of the primary transistors together. Secondary transistors (24, 26) are included to mimic voltage changes on either input.
Abstract:
An example device in accordance with an aspect of the present disclosure includes a first module, a second module, and a third module. The first module is to compare an input current to a first reference current, and provide a first output. The second module is to compare the input current to a second reference current, and provide a second output. The third module is to compare the first output to the second output, and provide a third output indicative of a state associated with the input current.
Abstract:
Methods for precharging bit lines using closed-loop feedback are described. In one embodiment, a sense amplifier may include a bit line precharge circuit for setting a bit line to a read voltage prior to sensing a memory cell connected to the bit line. The bit line precharge circuit may include a first transistor in a source-follower configuration with a first gate and a first source node electrically coupled to the bit line. By applying local feedback from the first source node to the first gate, the bit line settling time may be reduced. In some cases, a first voltage applied to the first gate may be determined based on a first current drawn from the first bit line. Thus, the first voltage applied to the first gate may vary over time depending on the conductivity of a selected memory cell connected to the bit line.
Abstract:
A non-volatile memory device with a sensing amplifier (10) that includes a current mirror comprising a pair of resistors (20,30) and an operational amplifier (40) is disclosed.
Abstract:
Memory circuits and systems are provided. One memory circuit includes an active memory device, an inactive memory device, and a sense amplifier coupled between the active memory device and the inactive memory device. A reference current is coupled between the inactive memory device and the sense amplifier. The active memory device and the inactive memory device are the same type of memory device and the inactive memory device is a reference device with respect to the active memory device's current. A memory system includes a plurality of the above memory circuit coupled to one another. Methods for sensing current in a memory circuit are also provided. One method includes supplying power to a first memory device and comparing the amount of current in the first memory device and a reference current coupled to a second memory device that is the same type of memory device as the first memory device.
Abstract:
Example subject matter disclosed herein relates to apparatuses and/or devices, and/or various methods for use therein, in which an application of an electric potential to a circuit may be initiated and subsequently changed in response to a determination that a snapback event has occurred in a circuit. For example, a circuit may comprise a memory cell that may experience a snapback event as a result of an applied electric potential. In certain example implementations, a sense circuit may be provided which is responsive to a snapback event occurring in a memory cell to generate a feed back signal to initiate a change in an electric potential applied to the memory cell.
Abstract:
Techniques are disclosed herein for efficiently operating memory arrays of non-volatile storage devices. In one embodiment, when reading data from an MLC block, reading is sped up by not discharging bit lines between successive sensing operations. For example, all even bit lines are charged up and odd bit lines are grounded to set up sensing of memory cells that are associated with a first word line and the even bit lines. Then, memory cells associated with the first word line and the even bit lines are read by, for example, sensing the even bit lines. Then, while the even bit lines are still charged, memory cells associated with another word line and the even bit lines are read. Because the even bit lines remain charged between the two sensing operations, time is saved in not having to re-charge the bit lines to an appropriate level for sensing.
Abstract:
A sense amplifier circuit (10) and a method for reading a memory cell. A circuit comprises a bit line (46) associated with a memory cell. A first input of a latch (12) is coupled to the bit line and a second input of the latch is coupled to a second node (32) of a dummy bit line (48). There is a means for biasing (24, 26, 38, 40) the first input and the second input of the latch to a differential voltage between the first node (30) coupled to the bit line and the second node. There is also a means for switching (52, 54, 56, 78) the latch according to memory cell current. There is also a means (74, 66, 68) for producing an output signal (dout) indicating the direction of switch. A method of reading a memory cell comprises precharging a bit line which is associated with a memory cell. The memory cell current is driven according to the programmed state of the memory cell. Latch circuitry is biased based on a differential voltage between a first node coupled to the bit line and a second node. The latch circuitry is then activated and the latch circuitry switches according to the memory cell current. An output signal indicating the direction of the latch circuitry's switch is then produced.
Abstract:
A memory (12) includes a plurality of memory cells (12), a sense amplifier (18) coupled to at least one of the plurality of memory cells, a temperature dependent current generator (26) comprising a plurality of selectable temperature dependent current sources (52-62) for generating a temperature dependent current, a temperature independent current generator (28) comprising a plurality of selectable temperature independent current sources (70, 72, 74) for generating a temperature independent current, and a summer (30) coupled to the temperature dependent current generator (26) and the temperature independent current generator (28) for combining the temperature dependent current and the temperature independent current to generate a reference current for use by the sense amplifier (18). A temperature coefficient of the reference current is approximately a same as a temperature coefficient of a memory cell current of at least one of the plurality of memory cells.
Abstract:
A sense amplifier circuit for reading the state of memory cells. In one aspect of the invention, the sense amplifier circuit includes a first stage receiving a cell current derived from the memory cell and a reference current derived from a reference cell, and a second stage receiving the cell current and the reference current. A comparator, coupled to the first stage and the second stage, provides an output indicative of the state of the memory cell based on a difference of the voltages provided by the first stage and the second stage, where the state indicated by the comparator is substantially unaffected by capacitive current components provided by transient behavior of the first and second stages.