Abstract:
The present invention provides a method for inhibiting the growth of pathogens in an animal feed comprising the steps of: contacting an animal feed with at least one lactic acid bacterium strain selected from the group consisting of Lactobacillus salivarius (L14, L28 and FS56), a mixture thereof; or a whey obtained from fermentation of the lactic acid bacterium strain, wherein the at least one lactic acid bacterium strain inhibits the growth of the pathogens, the nosocomial pathogens or the spoilage microorganisms in the pet food.
Abstract:
Disclosed is a system and method for a 24-GHz phased array for indoor smart radar comprising at least 6 horizontally placed antenna elements as a vertically placed 5-element series-fed microstrip patch array. The beam of the phased array can be continuously steered on the H-plane to different directions through a novel vector control array. Each element can adjust the phase and amplitude of the corresponding element of the horizontally placed linear array. The phased array system of the present invention may be fabricated on a single printed circuit board (PCB), and PIN diodes are used to realize beam steering by modulating the decomposed received signal. In order to compensate for the loss of the vector control array and reduce the noise figure, six low noise amplifiers (LNAs) are also used in the array. The present invention has the ability to continuously steer the beam on the H-plane.
Abstract:
The present invention includes compositions and methods for inhibiting MCL-1, including novel inhibitors of MCL-1, and compositions and methods for treating a subject with cancer that is refractory to one or more MAPK pathway protein inhibitors.
Abstract:
The present invention provides a set of oligonucleotides to screen for the presence of targeted Salmonella serotypes in enrichment or to characterize presumptive colonies. The set of oligonucleotides includes at least one set of primers and probe for the detection of Salmonella serotype selected from Newport, Heidelberg, Infantis, and Hadar and to discriminate between. These new markers can be used after the initial screening assay described herein as a discrimination assay to differentiate S. Heidelberg from S. Infantis and S. Hadar from S. Newport.
Abstract:
A multilateral well placement methodology is provided for hydrocarbon reservoirs utilizing transshipment network optimization to best fit productivity conditions in the reservoir. Multilateral well trajectories are generated which ensure contact with hydrocarbon rich pockets in the reservoir. Different levels of branching for lateral wells are also permitted.
Abstract:
Disclosed is a system for a biomimetic heart device simulating arterial flow and pulse properties thus allowing for a biomimetic microscale cardiac valve environment. The system's signaling and regulatory mechanisms linking mechano-sensing and cellular degenerative transformation provides details of force components and/or magnitudes leading heart valves to accelerated failure. The disclosed system supports a wide variety of scenarios for testing, diagnostics and drug delivery, and related products and services.
Abstract:
A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.
Abstract:
The present invention provides a set of oligonucleotides to screen for the presence of targeted Salmonella serotypes in an enrichment or to characterize presumptive colonies. The set of oligonucleotides includes at least one set of primers and probe for the detection of Salmonella serotype selected from Typhimurium, Enteritidis, Newport, Heidelberg, Infantis, Virchow and Hadar. The set of oligonucleotides may include up to 5 different primer sets and the corresponding probes.
Abstract:
A microwave-induced heating of CNT filled (or coated) polymer composites for enhancing inter-bead diffusive bonding of fused filament fabricated parts. The technique incorporates microwave absorbing nanomaterials (carbon nanotubes (CNTs)) onto the surface or throughout the volume of 3D printer polymer filament to increase the inter-bead bond strength following a post microwave irradiation treatment and/or in-situ focused microwave beam during printing. The overall strength of the final 3D printed part will be dramatically increased and the isotropic mechanical properties of fused filament part will approach or exceed conventionally manufactured counterparts.