Abstract:
A cold storage panel (10), which includes a carbon foam core (12) having a high ratio of compressive strength to density, desirable fire retardant properties, and resistance to environmental stress. The carbon foam insulated panel (10) also includes a first layer (14) and a second layer (16) bound to a first surface and second surface of the carbon foam core (12). Applications of the carbon foam structural insulated panel include structural and fire retardant elements of residential and commercial refrigerators and freezers, food lockers, coolers, and the like.
Abstract:
A carbon foam material with improved graphitizability is formed by including a graphitization promoting additive into the carbon foam. The graphitization promoting additive greatly improves the graphitic structure of the carbon foam resulting in a carbon foam with much greater thermal and electrical conductivities. This inventive foam may be created by introducing the graphitization promoting additive during the catalysis of a phenol-aldehyde mixture to a form phenolic resin or during the conversion of the phenolic resin to a phenolic foam. Alternatively, the graphitization promoting additive can be fixed onto a preformed carbon foam.
Abstract:
Described herein are composites that are relatively lightweight, high strength and low thermal conductivity. Also described herein are methods for the manufacture and use thereof of the composites.
Abstract:
A method of producing a densified SiC article is provided. Near-net shape porous silicon carbide articles are produced and densified using the developed method. A substantial number of pores within the porous near-net shape silicon carbide article are filled (impregnated) with a carbon precursor, a silicon carbide precursor, or a mixture of both. The carbon precursor can be liquid or gas. The filled SiC preform is heated to convert the carbon or silicon carbide precursor to porous carbon or SiC preform inside the pores of the net-shape silicon carbide article. The impregnation/pyrolysis cycle is repeated until the desired amount of carbon and/or silicon carbide is achieved. In case of a carbon or a mixture of silicon carbide/carbon precursor is used, the pyrolyzed near-net shape silicon carbide article is then contacted with silicon in an inert atmosphere. The silicon diffuses through the pyrolyzed near-net shape silicon carbide article and reacts with the carbon contained within the pores of the porous SiC preform producing a new phase of silicon carbide within the pores of the near-net shape silicon carbide article. The produced silicon carbide is a near-net dense silicon carbide article.
Abstract:
A boron carbide composite body produced by an infiltration process that possesses high mechanical strength, high hardness and high stiffness has applications in such diverse industries as precision equipment and ballistic armor. In one embodiment, the composite material features a boron carbide filler or reinforcement phase, and a silicon carbide matrix produced by the reactive infiltration of an infiltrant having a silicon component with a porous mass having a reactable carbonaceous component. In an alternate embodiment, the infiltration can be caused to occur in the absence of the reactable carbonaceous component, e.g., to produce "siliconized boron carbide". Potential deleterious reaction of the boron carbide with silicon during infiltration is suppressed by alloying or dissolving a source of boron, or a source of carbon, or preferably both boron and carbon into the silicon prior to contact of the silicon infiltrant with the boron carbide. In a preferred embodiment of the invention related specifically to armor, good ballistic performance can be advanced by loading the porous mass or preform to be infiltrated to a high degree with one or more hard fillers such as boron carbide, and by limiting the size of the morphological features, particularly the ceramic phases, making up the composite body. The instant reaction-bonded boron carbide (RBBC) composite bodies are at least comparable in ballistic performance to current boron carbide armor ceramics but feature lower cost and higher volume manufacturing methods, e.g., infiltration techniques.
Abstract:
The present invention relates to a process for preparing a multi-layered ceramic filter comprising the steps of preparing a slurry by mixing ceramic powder selected from the group consisting of silicon carbide, alumina, silimanite, kaolin, silica, titania and siliceous earth, clay, supplementing agent, a binder and a dispersion; supporting the slurry on a support to mold; drying and sintering the molded product; wherein after drying and before sintering, or after sintering, a slurry comprising ceramic powder, supplementing agent, a binder and a dispersion is further coated inside or outside of the molded product, and a ceramic filer prepared by the process. According to the present invention, production cost decreases, preparation is easy, shape can be easily modified and large sized filer can be easily prepared, abrasion resistance and heat resistance of ceramic filer can be remarkably improved, porosity control range can be improved, light-weighted construction with the same heat resistance and abrasion resistance is possible due to cross sections of different shapes, and blocking can be minimized.
Abstract:
Die vorliegende Erfindung betrifft Schäume aus supraleitenden Materialien, die poröse Formkörper sind, Verfahren zu deren Herstellung sowie poröse Vorformkörper aus einem Precursormaterial für das supraleitende Material zur Herstellung derartiger supraleitender Schäume, und Verbundwerkstoffe, die gebildet werden, durch Aufbringung/Einbringung von mindestens einem weiteren Materials auf die supraleitenden Schäume.
Abstract:
A silicon carbide based, porous structural material being heat−resistant and super−lightweight; and a method for preparing the material, which comprises impregnating a spongy skeleton of a porous structure with a slurry containing a resin and a silicon powder to such an extent that open−cells of the porous structure are not closed, carbonizing the impregnated skeleton under vacuum or in an inert atmosphere at 900 to 1320˚C, subjecting the resultant carbonized porous structure to a reaction sintering under vacuum or in an inert atmosphere at 1320˚C or higher, to thereby form silicon carbide having good wettability with molten silicon and also generate open pores resulting from a volume reducing reaction, and impregnating the resultant porous structure with molten silicon under vacuum or in an inert atmosphere at 1300 to 1800˚C. The silicon carbide based material retains a form of a spongy porous stricture and can be prepared with ease by using the method.
Abstract:
Kostengünstiges Erzeugnis aus porösem Kohlenstoff, dessen Porenstruktur für eine Rückhaltung von Elektrodenbestandteilen geeignet ist, und das insbesondere für einen Einsatz als Elektrodenmaterial für eine Lithium- Schwefel - Sekundärbatterie dienen kann und ein Verfahren, das folgende Verfahrensschritte umfasst: (a) Bereitstellen eines Templats aus anorganischem Werkstoff, das sphärische Nanoteilchen und Poren enthält, (b) Infiltrieren der Poren des Templats mit einer Vorstufe für Kohlenstoff einer ersten Varietät, (c) Carbonisieren unter Bildung einer Innenschicht auf den Nanoteilchen mit einer ersten Mikroporosität, (d) Infiltrieren verbleibender Poren des Templats mit einer Vorläufersubstanz für Kohlenstoff einer zweiten Varietät, (e) Carbonisieren der Vorläufersubstanz wobei auf der Innenschicht eine Außenschicht mit einer zweiten Mikroporosität, dieniedriger ist als die erste Mikroporosität, erzeugt wird, und (f) Entfernen des Templats unter Bildung des Kohlenstofferzeugnisses mit Schichtverbundstruktur, umfassend eine Innenschicht aus Kohlenstoff mit einer ersten, höheren Mikroporosität, die eine einer Kavität zugewandte freie Oberfläche aufweist, sowie eine Außenschicht aus Kohlenstoff mit einer zweiten, niedrigeren Mikroporosität, die eine der Kavität abgewandte freie Oberfläche aufweist.
Abstract:
Die Erfindung bezieht sich auf ein Verfahren zum Herstellen eines Wärmeübertragers umfassend Kanäle aufweisende oder begrenzende Formteile aus keramischen Material. Um bei einfacher Herstellung eine gute Wärmeleitung sicherzustellen, wird vorgeschla- gen, dass aus zumindest Zellulosefasern und zumindest einen Füllstoff enthaltendem Papier Preformen hergestellt und sodann die Papierpreformen zur Bildung der Formteile oder Abschnitte dieser carbonisiert werden.