Abstract:
본 발명은 액화가스 저장 및 운반용 탱크의 중량을 경량화 할 수 있음은 물론 제작비용 또한 절감할 수 있는 압력 용기용 보강판 및 이를 이용하여 제작된 액화가스 저장 및 운반용 탱크에 관한 것이다. 본 발명에 따른 압력 용기용 보강판은, 외피가 주름판 형태, 즉 단면의 형상이 암키와(Concave tile), 호(Arc), 반원형, 반타원형, 사다리꼴, 다각형 중 선택된 어느 하나의 형태가 되도록 주름지게 형성됨으로써 압력 용기용 보강판의 내부압력에 의해 외피에 발생되는 굽힘 모멘트가(외피가 호, 암키와, 반원, 반타원일 경우) 원환응력으로 변환되고(외피가 사다리꼴, 다각형일 경우) 굽힘응력이 대폭 감소할 뿐만 아니라, 골재의 높이가 일반적인 압력 용기용 보강판에 대비 상기 외피의 호의 높이만큼 증가하게 되며, 외피가 평판 형태로 형성되어 전단 지연이 현상이 나타나는 일반적인 압력 용기용 보강판의 외피의 응력분포에 비하여 외피의 응력 분포가 균일하게 나타난다. 그리하여 외피와 골재의 강도가 증가하여 골재의 설치 간격과 강력보의 설치 간격을 일반적인 압력 용기용 보강판에 비하여 넓힐 수 있어 골재와 강력보의 설치 수량이 감소하고 외피에 발생하는 판의 굽힘이 발생하지 않을 뿐만 아니라 좌굴 강도가 증가하게 됨으로써 액화가스 저장 및 운반용 탱크의 제작비용을 절감할 수 있음과 동시에 구조부재로서의 효율성을 향상시킬 수 있는 효과가 있다.
Abstract:
Ein Verfahren zum Herstellen einer Druck-Speichereinrichtung weist die folgenden Schritte auf: Herstellen mindestens eines Rohrelements (13), Anordnen des mindestens einen Rohrelements (13) in einer Endstellung, Verfüllen des Rohrelements (13) mit Bindemittel, Anordnen einer Innenwand (14) der Druck-Speichereinrichtung innerhalb des mindestens einen Rohrelements (13), so dass das mindestens eine Rohrelement (13) zwischen der Innenwand (14) und einer das mindestens eine Rohrelement umgebenden Außenwand (12) angeordnet ist und Verfüllen von Zwischenräumen (15) zwischen der Innenwand (14) und der Außenwand (12) mit Bindemittel.
Abstract:
A support assembly mounted on the roof of a tank, comprising a support block (1), a base plate (4) between the support block (1) and the tank, and guiding brackets or rails (2) joined to a structure above the tank characterized in that each of the brackets or rails (2) comprise a face turned towards a cooperating face of the support block, the face of the bracket or rail and the cooperating face of the support block (1) are inclined at an angle, said angle depending on the width and height of the support (1).
Abstract:
A gas cylinder (1) comprising a cylinder body (2) with a tubular wall (5) having at least a first tubular portion (11) that is enlarged, and at least a second tubular portion (12) that is adjacent and narrowed relative to the first tubular portion (11).
Abstract:
Die vorliegende Erfindung betrifft einen Druckbehälter (1) mit einem aus parallelen, eine in Längsrichtung verlaufende Sicke (8, 10) definierenden, nebeneinander liegenden, teilzylindrischen Mantelschalen (2, 4) aufgebauten Mantel. Dessen Stirnenden sind jeweils mit einem gewölbten Boden (16, 18) verschlossen, wobei zwischen den teilzylindrischen Schalen (2, 4) ein insbesondere als ebene Wand (6; 6a, 6b) ausgebildetes Zugelement angeordnet, dessen oberer bzw. unterer Rand (12, 14) in den oberen bzw. unteren Sickenbereich (8, 10) hineinragt bzw. diesen durchsetzt. Weiterhin ist ein die Mantelschalen (2, 4) und das Zugelement (6) verbindendes in Längsrichtung verlaufendes Schalenelement (42) vorgesehen, das wenigstens abschnittsweise mit den Mantelschalen (2, 4) und mit dem insbesondere abgekanteten Rand (12, 12a; 14, 14a) des Zugelements (6) fest verbunden ist, so dass im Sickenbereich (8, 10) eine Trägerstruktur gebildet wird. Die Erfindung betrifft weiterhin eine Transportbehälteranordnung, insbesondere eine Tankcontainereinheit (100) mit einem erfindungsgemäßen Druckbehälter (1).
Abstract:
The present invention relates to a reinforcement member for a membrane for improving the pressure endurance of the membrane having a corrugated portion, and to a membrane assembly having same and a construction method for same. The membrane is arranged on a heat insulation structure of the liquefied natural gas cargo and has a corrugated portion. The reinforcement member for the membrane is interposed between the heat insulation structure and the corrugated portion of the membrane to increase the strength of the corrugated portion. The reinforcement member of the present invention is capable of preventing the collapse of the corrugated portion and reducing impacts to the same load even without increasing the surface strength of the corrugated portion. The reinforcement member of the present invention has a heat insulation layer for improving heat insulation efficiency.
Abstract:
A metallic liner for a composite reinforced high pressure gas cylinder is composed of a seamless metal tube contoured with a top dome and bottom dome. The liner is further composed of a seamless top metal end cap having a mating shape of the top dome and a seamless bottom metal end cap having a mating shape of the bottom dome. Alternatively, an extruded cup is shaped to a dome at the open end and one or two seamless metal end caps are used. In the method of manufacturing, the top and bottom ends of the metal tube are contoured, the end caps are produced, and one or two end caps are attached to the ends of the tube.
Abstract:
Cryogenic fluid tank, comprising an internal casing (4) placed in an external casing (3) with a vacuum insulation space (6) therebetween, the tank and in particular the two internal (4) and external (3) casings having an oblong general shape, the cross section of which in a plane perpendicular to the longitudinal axis is non-circular, said tank comprising at least one element (2) for reinforcing the external casing, in order to prevent the latter from buckling, characterized in that the element or elements (2) for reinforcing the external casing are placed only on the outer surface of the external casing (3).
Abstract:
A horizontal generally cylindrical tank (2) for transportation of liquefied gases at low temperature in a ship is supported in two saddle supports (12) in the ship (1). At each support, the tank has internal reinforcements comprising two adjacent perforated bulkheads (3) and a framework of crossing girders/stiffeners (4-7) welded between the bulkheads (3), thus providing a tank (2) with sufficient strength for a capacity in the range of at least 40.000 - 60.000 m 3 . A method for securing accurate roundness of the tank in the support area is also described.
Abstract translation:在船舶(1)中的两个鞍形支撑件(12)中支撑有用于在船舶中低温运输液化气体的水平大致圆柱形的罐(2)。 在每个支撑件处,罐具有包括两个相邻的穿孔隔板(3)和焊接在舱壁(3)之间的交叉梁/加强件(4-7)的框架的内部加强件,从而为罐(2)提供足够的强度 容量在至少40.000 - 60.000 m 3范围内。 还描述了用于确保罐在支撑区域中的精确圆度的方法。