Abstract:
Flexible interconnection between substrates (106-1...106-6), where the substrates include one or more solid state light sources, mounted at varying angles are provided. A multi-dimensional lighting device (100) is formed using such substrates (106-1...106-6). The multi-dimensional lighting device (100) includes external mounting surfaces (116), each configured to provide mounting positions for one or more substrates. A flexible jumper device (107-1...107-5) electrically couples a given substrate to an adjacent substrate, and provides a predefined clearance between surfaces of the same and exposed conductive surfaces of the lighting device (100). Each flexible jumper (107-1...107-5) includes a surface mount device (SMD) capable of being placed by automated process, such as by pick-and-place machines. Such lighting devices are thus possible using automated processes in a high-volume, highly-precise manner.
Abstract:
Some embodiments provide a novel surface-mount technology (SMT) printed circuit board (PCB) assembly. The SMT PCB assembly includes at least a pair of adjacent conductive pads with a small gap between them. During the development phase of the SMT PCB assembly, the small gap between the adjacent conductive pads, as well as some of the adjacent portions of the conductive pads, are covered with solder mask. An SMT component (e.g., a zero-ohm resistor) may then be mounted to the SMT PCB assembly through the exposed portions of the conductive pads. During the production phase, however, the solder mask is revised to cover the far sides of the conductive pads, which results in the adjacent portions of the conductive pads being exposed. As such, a solder jumper can easily be created during the production phase by connecting the two conductive pads using solder paste.
Abstract:
Verfahren zur Bearbeitung von Substraten (1), wobei a) ein Substrat (1) bereitgestellt wird mit: - einer elektrisch leitfähigen Beschichtung (2), - mindestens einer Isolationslinie (3), - mindestens einem ersten (2.1) und einem zweiten Teilbereich (2.2) der Beschichtung (2), zwischen denen eine Isolationslinie (3) verläuft, - optional mindestens einem Defekt (3.1) mit einem Anteil von kleiner als 10% an der Gesamtfläche der Isolationslinie (3), b) ein erster elektrischer Kontakt (4.1) mit dem ersten Teilbereich (2.1) und ein zweiter elektrischer Kontakt (4.2) mit dem zweiten Teilbereich (2.2) verbunden werden, c) eine Spannung U n zwischen erstem elektrischen Kontakt (4.1) und zweitem elektrischen Kontakt (4.2) angelegt wird, d) gemessen wird ob ein elektrischer Strom zwischen erstem (2.1) und zweitem Teilbereich (2.2) fließt, e) sofern Strom fließt, Schritte c) und d) mit einer Spannung von größer oder gleich U n wiederholt werden, bis in Schritt d) kein Strom mehr gemessen werden kann.
Abstract:
Disclosed is a method of printing an ultranarrow line of a functional material. The method entails providing a substrate having an interlayer on the substrate and printing the ultranarrow line by depositing ink on the interlayer of the substrate, the ink comprising the functional material and a solvent mixture that partially dissolves the interlayer on the substrate to cause the ink to shrink and sink into the interlayer on the substrate thereby reducing a width of the line.
Abstract:
Die Erfindung betrifft ein variables Sensor-Interface für ein Steuergerät, umfassend eine Leiterplatte, welche mit Bauelementen bestückt ist. Bei einem Sensor-Interface, welches einfach zur Nutzung verschiedener Sensortypen einsetzbar ist, weist die Leiterplatte ein vorgegebenes Leiterbahnlayout mit einer Vielzahl vorgegebener Bestückungsplätze auf, wobei die Bestückungsplätze sensorspezifisch mit Bauelementen bestückt sind.
Abstract:
A method and apparatus of forming a transparent metal oxide layer on a conductive surface of a dielectric substrate involves exposing first and second conductive surface portions of the conductive surface of the dielectric substrate to first and second electrolytes respectively to form first and second electrochemical cells in which the first conductive surface is part of the first electrochemical cell and the second conductive surface is part of the second electrochemical cell and wherein the electrochemical cells are electrically connected together by the conductive surface of the dielectric substrate. An electric potential applied across first and second counter electrodes in the first and second cells respectively drives an electric current through the first and second electrolytes and causes metal ions and oxygen in the second electrolyte to form the transparent metal oxide layer on the second conductive surface portion when a current is passed through the first and second electrolytes. The transparent metal oxide layer may be made non-conductive or conductive or even semi-conductive through the absence or inclusion of dopant in the second electrolyte. A conductive surface of a dielectric substrate of any length can be uniformly plated with a transparent metal oxide layer by moving the dielectric substrate relative to the first and second electrolytes while exposing the first and second surface portions to the first and second electrolytes respectively.